Home
News
Publications
People
Projects
Talks
Contact
featured
Accelerating Transformer Inference for Translation via Parallel Decoding
Autoregressive decoding limits the efficiency of transformers for Machine Translation (MT). The community proposed specific network …
Andrea Santilli
,
Silvio Severino
,
Emilian Postolache
,
Valentino Maiorca
,
Michele Mancusi
,
Riccardo Marin
,
Emanuele Rodolà
PDF
Cite
arXiv
GitHub
Latent Autoregressive Source Separation
Autoregressive models have achieved impressive results over a wide range of domains in terms of generation quality and downstream task …
Emilian Postolache
,
Giorgio Mariani
,
Michele Mancusi
,
Andrea Santilli
,
Luca Cosmo
,
Emanuele Rodolà
Cite
arXiv
GitHub
Relative representations enable zero-shot latent space communication
Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. …
Luca Moschella
,
Valentino Maiorca
,
Marco Fumero
,
Antonio Norelli
,
Francesco Locatello
,
Emanuele Rodolà
PDF
Cite
URL
GitHub
Slides
ICLR 2023 notable top 5%
Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning
Predicting interactions between proteins and other biomolecules solely based on structure remains a challenge in biology. A high-level …
P. Gainza
,
F. Sverrisson
,
F. Monti
,
Emanuele Rodolà
,
Davide Boscaini
,
M. M. Bronstein
,
B. Correia
Cite
LIMP: Learning Latent Shape Representations with Metric Preservation Priors
In this paper, we advocate the adoption of metric preservation as a powerful prior for learning latent representations of deformable 3D …
Luca Cosmo
,
Antonio Norelli
,
Oshri Halimi
,
Ron Kimmel
,
Emanuele Rodolà
Cite
arXiv
GitHub
Isospectralization, or how to hear shape, style, and correspondence
The question whether one can recover the shape of a geometric object from its Laplacian spectrum (‘hear the shape of the …
Luca Cosmo
,
Mikhail Panine
,
Arianna Rampini
,
Maks Ovsjanikov
,
Michael M. Bronstein
,
Emanuele Rodolà
Cite
DOI
PDF
GitHub
Deep Functional Maps: Structured Prediction for Dense Shape Correspondence
We introduce a new framework for learning dense correspondence between deformable 3D shapes. Existing learning based approaches model …
O. Litany
,
T. Remez
,
Emanuele Rodolà
,
A. M. Bronstein
,
M. M. Bronstein
Cite
Cite
×