
RELATIVE REPRESENTATIONS ENABLE
ZERO-SHOT LATENT SPACE COMMUNICATION

Luca Moschella1,∗ Valentino Maiorca1,∗

Marco Fumero1 Antonio Norelli1 Francesco Locatello2,† Emanuele Rodolà1
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ABSTRACT

Neural networks embed the geometric structure of a data manifold lying in a
high-dimensional space into latent representations. Ideally, the distribution of the
data points in the latent space should depend only on the task, the data, the loss,
and other architecture-specific constraints. However, factors such as the random
weights initialization, training hyperparameters, or other sources of randomness
in the training phase may induce incoherent latent spaces that hinder any form of
reuse. Nevertheless, we empirically observe that, under the same data and model-
ing choices, distinct latent spaces typically differ by an unknown quasi-isometric
transformation: that is, in each space, the distances between the encodings do
not change. In this work, we propose to adopt pairwise similarities as an al-
ternative data representation, that can be used to enforce the desired invariance
without any additional training. We show how neural architectures can leverage
these relative representations to guarantee, in practice, latent isometry invariance,
effectively enabling latent space communication: from zero-shot model stitching
to latent space comparison between diverse settings. We extensively validate the
generalization capability of our approach on different datasets, spanning various
modalities (images, text, graphs), tasks (e.g., classification, reconstruction) and
architectures (e.g., CNNs, GCNs, transformers).

1 INTRODUCTION

Neural Networks (NN) learn to transform high dimensional data into meaningful representations
that are helpful for solving downstream tasks. Typically, these representations are seen as elements
of a vector space, denoted as latent space, which corresponds to the constrained output (explicitly or
implicitly) of a key component of the NN, e.g., the bottleneck in an Autoencoder (AE), or the word
embedding space in an NLP task. The underlying assumption is that the learned latent spaces should
be the best encoding given the data distribution, the downstream task, and the network constraints.

In practice, however, the learned latent spaces are subject to changes even when the above assump-
tions remain fixed. We illustrate this phenomenon in Figure 1, where we show the latent spaces
produced by an AE with a two-dimensional bottleneck, trained on the MNIST dataset several times
from scratch. These spaces differ from one another, breaking the fundamental assumptions made
above. The distribution of the latent embeddings is affected by several factors, such as the ran-
dom initialization of the network weights, the data shuffling, hyperparameters, and other stochastic
processes in the training phase. Although different, the learned representations in Figure 1 are in-
trinsically similar: the distances between the embedded representations are approximately the same
across all spaces, even if their absolute coordinates differ. Indeed, the learned latent spaces are the
same up to a nearly isometric transformation.1

This symmetry is a consequence of the implicit biases underlying the optimization process (Soudry
et al., 2018) forcing the model to generalize and, therefore, to give similar representations to similar
samples with respect to the task. There exist infinitely many spatial arrangements complying with
these similarity constraints, each associated with a different isometry. But while the resulting mod-

∗Equal contribution. † Work done outside of Amazon.
1To the best of our knowledge, the first to acknowledge this behavior was Olah (2015) in a blogpost.
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Figure 1: Latent spaces learned by distinct trainings of the same AE on the MNIST dataset. The
bottleneck has size 2, thus there is no dimensionality reduction involved in the visualization of the
latent space. The stochasticity in the training phase induces the same representations up to isometry.
As we show in Figure 5, this property holds even for high-dimensional latent spaces.

els will be equally good in terms of the task, one still encounters several practical problems. For
example, it is notoriously challenging to compare latent spaces across different trainings or across
different NNs; perhaps more importantly, re-using neural components trained on different embed-
dings of the same data becomes impossible, since they are incompatible. To overcome this, we
propose adopting a local coordinate system defined by the data itself. Each data point becomes a set
of coefficients that encode the point as a function of other data samples, instead of an independent
point in Rd. The proposed relative representation directly encodes the intrinsic information underly-
ing the data, and can be made fully invariant to isometries by construction. Remarkably, this enables
a form of compositionality between learning models; it allows, for instance, to stitch together an
encoder trained on ImageNet with a decoder trained on CIFAR, as we showcase in our experiments.

Our main contributions can be summarized as follows:

• We show that the representations learned by NNs are subject to change due to several
factors in the training process, and model these changes via latent space isometries.

• We introduce a novel relative representation for latent embeddings, that is invariant by
construction to the isometries induced by stochastic factors in the training process.

• For the first time, we successfully demonstrate zero-shot stitching of neural components
produced by distinct training regimens, e.g., due to different seeds or different neural ar-
chitectures; we validate our findings on different data modalities (e.g. images, text).

• Our framework also provides a quantitative measure of performance while training neural
models, which is differentiable, does not need any labeled data, and is correlated with
standard performance measures such as accuracy.

2 RELATED WORK

Representation similarity. Recently, there has been growing agreement that good networks learn
similar representations across a variety of architectures, tasks and domains (Morcos et al., 2018;
Li et al., 2016; Kornblith et al., 2019; Bonheme & Grzes, 2022; Tsitsulin et al., 2020; Barannikov
et al., 2022; Vulić et al., 2020; Lample et al., 2018; Lenc & Vedaldi, 2015), although this is still
debated (Wang et al., 2018) and missing strong theoretical justifications. Supported by the em-
pirical evidence widely reported in these works, our method assumes that well-performing neural
networks trained on similar tasks and data produce similar latent spaces, which allows us to define
a representation that unifies all these spaces.

Model stitching. Lenc & Vedaldi (2015) introduced trainable stitching layers that allow swapping
parts of different networks, while Bansal et al. (2021); Csiszárik et al. (2021) employed stitching
to quantitatively verify statements such as “good networks learn similar representations” and “more
data, width or time is better”. Other works, such as Gygli et al. (2021), tried to directly produce
compatible and reusable network components without stitching layers; more in general, stitching
has been adopted in the literature to analyze neural networks. In our work, we sidestep the need for
trainable stitching layers and propose zero-shot model stitching to effectively reuse models.
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Relative information. The attention mechanism (Vaswani et al., 2017) and its variants (Kossen
et al., 2021) exploit the relationship between features to extract meaningful representations.
Prototypical Networks (Snell et al., 2017) learn a metric space where the classification can be
performed by measuring the distances to prototype representations. Shalam & Korman (2022)
proposed the Self Optimal Transport feature transform to enrich the sample representations with
higher order relations between the instance features, while Alvarez-Melis et al. (2019) proposed a
general formulation of the optimal transport that accounts for global invariances in the underlying
feature spaces. Mathematically, our method bears resemblance to a kernel method (Hofmann et al.,
2008) as it employs inner products of embedded features as a core ingredient. However, differently
from kernel methods, we do not introduce learnable parameters and, crucially, we compute the
representations explicitly without resorting to a kernel trick.

3 METHOD

Given a training set X, standard NNs learn an embedding functionEθ : X→ Rd, parametrized by θ,
which maps each sample x(i) ∈ X to its latent representation, or absolute representation, ex(i) =
Eθ(x

(i)). This representation is then exploited to solve downstream tasks, such as classification,
reconstruction or generation, optimizing over some objective function of the general form:

min
θ

Ex∈X[L(Eθ(x)) +Reg(θ)] . (1)

Here, EX denotes the expectation over the training distribution, and Reg(θ) encodes additional
constraints on the weights θ. As previously discussed, we argue that the learned weights θ∗ are
not only a function of X and of the specific loss appearing in Equation 1, but in practice they are
also affected by the optimization process used to train the network due to weight initialization, data
shuffling, hyperparameters, and other stochastic factors. We denote these factors collectively by
φ. In particular, as shown in Figure 1, changing these factors induces a transformation T over the
latent space, i.e., φ → φ′ implies Eθ(x(i)) → TEθ(x

(i)). We make the core assumption that T is
an isometric transformation, preserving the distances between elements of the latent space, namely
d(ex(i) , ex(j)) = d(Tex(i) , Tex(j)) for every (x(i),x(j)) ∈ X. While the isometry assumption
might seem too restrictive, in practice it arises in several real scenarios as we show in the sequel.

3.1 RELATIVE REPRESENTATIONS

To build our representation, we start by selecting a subset A of the training data X, which we denote
as anchor samples. Every sample in the training distribution will be represented with respect to the
embedded anchors ea(j) = E(a(j)) with a(j) ∈ A. As a measure capturing the relation between the
anchors and the other samples, we consider a generic similarity function sim : Rd×Rd → R, yield-
ing a scalar score r between two absolute representations r = sim(ex(i) , ex(j)). Given the anchors
A in an arbitrary ordering a(1), . . . , a(|A|), we define the relative representation of x(i) ∈ X as:

rx(i) = (sim(ex(i) , ea(1)), sim(ex(i) , ea(2)), . . . , sim(ex(i) , ea(|A|))) . (2)
Figure 2 illustrates the key differences between absolute and relative representations.

⇒ ⇒

Figure 2: Left: Three anchors (colored stars) are selected on the data manifold; given a point on
the manifold (blue dot), we compute its similarity w.r.t. the three anchors, yielding a vector of
dimensionality 3 (middle). Right: Each dimension is treated as coefficients in a coordinate system
defined by the anchors. Anchors are orthogonal in this example only for visualization purposes.

Choice of the anchors. Anchors directly affect the expressivity of the relative representation space,
and are related to the task at hand. For example, in a classification task, we should sample anchors
from each class in the training set, in order to well represent each data sample in X.
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One case of interest arises when the data comes from different domains X, Y, and we are given a
partial correspondence Γ : PX 7→ PY mapping from a subset of X to a subset of Y. In this case,
we can sample anchors AX ⊆ PX and obtain corresponding anchors on the other domain directly as
Γ(A). We refer to these as parallel anchors. We show an example of parallel anchors in Section 5.2,
where X and Y represent Amazon reviews written in two different languages.

The choice of the anchors is not restricted to elements in the training distribution. Given an encoder
pre-trained on a fixed training distribution, we can pick elements from a set Ã that is out-of-domain
w.r.t. X, and build the relative representations on top of Ã. We refer to these as OOD anchors and ex-
ploit them, e.g., to solve domain adaptation tasks where we do not have access to a correspondence,
and have scarce data labels. We refer again to the Sections 5.2 and 5.3 for real-world examples.

Isometry invariance. In this work, we choose the cosine similarity as the similarity function due to
the properties it induces on the relative representation. The cosine similarity SC is the dot product
of unit vectors, corresponding to the cosine of the angle θ between the two:

SC(a, b) =
ab

||a||||b||
= cos θ . (3)

Importantly, cos θ does not change if we apply the same orthogonal transformation T to two vectors
a and b, i.e., the cosine similarity is invariant to rotations, reflections, and rescaling. While this
is not true for translations, NNs commonly employ normalization techniques (e.g., InstanceNorm
(Ulyanov et al., 2016)) to center the latent spaces around zero. Under this assumption, cosine simi-
larity guarantees a relative representation rx(i) invariant to isometric transformations.

This means we have the freedom to change the embedding function Eθ with any other function Ẽ
that produces different but isometric representations, i.e.:

[SC(ex(i) , ea(1)), . . . , SC(ex(i) , ea(|A|) ] = [SC(ẽx(i) , ẽa(1)), . . . , SC(ẽx(i) , ẽa(|A|))] , (4)

where ẽx(i) = Ẽ(x(i)) = TE(x(i)) and T is an arbitrary isometric transformation. A practical
application of this invariance is the possibility of comparing latent spaces across multiple trainings,
and re-using models as demonstrated in Sections 4 and 5.

Quasi-isometry invariance. We remark that other choices of similarity function can be made to
enforce different invariances into the representation. For example, to relax the isometry assumption,
one may impose invariance to non-isometric deformations with bounded distortion. We did not find
this to be a necessity in our experiments, as typically NNs that generalize sufficiently well can handle
small perturbations of the input. Nevertheless, this invariance can be enforced by design by using
vector quantization algorithms. We preliminarily explore this approach in Figure 7, leaving further
exploration to future work.

4 LATENT SPACE COMMUNICATION

In this section, we demonstrate how our relative representations can effectively be used to produce
latent spaces that are stable under a variety of factors. Our main question is the following: Given two
different learning models that are trained separately on different data, can we compare their latent
embeddings? In asking this, we assume that the two models are trained on a similar phenomenon,
e.g., on two different samplings of the English language or on two different modalities.

We answer in the positive, showing the gained invariance enables effective communication between
different, but semantically equivalent latent spaces. In particular, we analyze how different word em-
bedding spaces, once projected onto relative representations, are intrinsically the same (Section 4.1);
we then show how the similarity between the relative counterparts of two or more embedding
spaces is a surprisingly good predictor of model performance (Section 4.2); finally, we confirm that
relative representations in the training phase are not detrimental to performance (Section 4.3).

4.1 WORD EMBEDDINGS

Experimental setting. We select two different word embeddings on the English language, namely
FastText (Bojanowski et al., 2017) and Word2Vec (Mikolov et al., 2013). Both models are pre-
trained on different data, but partly share a vocabulary from which we extract≈ 20K words. For each
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embedding space, we convert their absolute embeddings to corresponding relative representations,
using 300 randomly drawn parallel anchors. In Table 1 (left) we show the original embeddings
and the resulting relative ones. We measure the degree of similarity in two ways: (i) Jaccard: for
each word vector in the source space, we compute the Jaccard similarity between its top-k source
neighbors and its top-k target neighbors; (ii) Mean Reciprocal Rank: for each embedded word in the
source space, we compute its (reciprocal) ranking among the top-k neighbors in the target.

FastText Word2Vec

A
bs

ol
ut

e
R

el
at

iv
e

Source Target Jaccard ↑ MRR ↑

A
bs

ol
ut

e FastText FastText 1.00 1.00
FastText Word2Vec 0.00 0.00
Word2Vec FastText 0.00 0.00
Word2Vec Word2Vec 1.00 1.00

R
el

at
iv

e FastText FastText 1.00 1.00
FastText Word2Vec 0.34 0.94
Word2Vec FastText 0.39 0.98
Word2Vec Word2Vec 1.00 1.00

Table 1: Qualitative (left) and quantitative (right) comparison of English word embeddings using
absolute and relative representations. All metrics are calculated with K = 10.

Result analysis. Table 1 (left) highlights clusters of semantically similar words and shows that the
absolute representations are incoherent across the two latent spaces, while the relative embeddings
are highly similar. The average Jaccard distance reported in Table 1 (right), says that the neigh-
borhoods of the relative representations are matched exactly 34% of the time in one direction, and
39% of the time in the other one (the missing 61% is due to semantic differences, that are not taken
into account by the discrete nature of the Jaccard metric). By contrast, the absolute embeddings are
never matched exactly (Jaccard score equal to zero); for a match to happen, it would mean that the
FastText and Word2Vec embeddings of a given English word are almost the same, which is
highly unlikely. The performance gap is even more evident in terms of MRR, which is close to a
perfect score for the relative representations.

Overall, these results show that relative representations are preserved across different word embed-
ding models, validating our isometry assumptions.

4.2 LATENT DISTANCE AS A PERFORMANCE PROXY

Experimental setting. In this experiment, we consider a node classification task on the Cora graph
dataset (Sen et al., 2008). We first train a reference model that achieves good accuracy on a validation
set. Then, we train ≈ 2000 models with various combinations of seed, number of epochs, number
of layers, dropout probability, activation functions, optimizer type, learning rate or type of graph
embedder (Table 8). All the models are classically trained using absolute representations, which are
converted to relative post-training by projecting the embeddings onto 300 randomly drawn but fixed
anchors. For each model, we measure its classification accuracy and compute the similarity of its
space with the reference one. This similarity is computed as the average cosine similarity between
the node embeddings produced by a given model and the corresponding embeddings in the reference.

Result analysis. The scatter plot in Figure 3 (left) shows that better-performing models tend to be
the ones with the latent spaces most similar to the reference. The performance-similarity correlation
also holds over time, as shown in Figure 3 (right). Additional correlation examples are in Figure 8.
Interestingly, this metric is differentiable, enabling an explicit supervision signal on the latent space,
which does not require labeled data and could be readily exploited in a teacher-student framework.

Overall, these results suggest that the similarity between the relative representations of latent spaces
is a remarkably good proxy to evaluate model performance.
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Figure 3: Graph node classification task on Cora. Left: Correlation between the performance of
≈ 2000 models and the similarity of their latent spaces with respect to a well-performing reference
model. Right: The same correlation plotted over time. The mean Pearson correlation over all models
is 0.955, after filtering out the models having best validation accuracy below 0.5.

4.3 TRAINING WITH ABSOLUTE VS. RELATIVE REPRESENTATIONS

Experimental setting. Finally, we compare architectures that do or do not employ the relative rep-
resentation while training. In these experiments, the models vary slightly according to the dataset;
however, the relative and absolute versions are always comparable in terms of architecture, num-
ber of learnable parameters and hyperparameters. We refer to the supplementary material and the
open-source code for further details on their implementation. In this section we consider classifi-
cation tasks on several datasets, spanning the image domain (Lecun et al., 1998; Xiao et al., 2017;
Krizhevsky, 2009) and the graph domain (Yang et al., 2016).

Table 2: Performance comparison between relative and absolute representations on several image
and graph datasets. The metric is the classification weighted F1 score (± std), over 6 seeds.

Image Classification Graph Node Classification

MNIST F-MNIST CIFAR-10 CIFAR-100 Cora CiteSeer PubMed

Relative 97.91± 0.07 90.19± 0.27 87.70± 0.09 66.72± 0.35 0.89± 0.02 0.77± 0.03 0.91± 0.01
Absolute 97.95± 0.10 90.32± 0.21 87.85± 0.06 68.88± 0.14 0.90± 0.01 0.78± 0.03 0.91± 0.01

Result analysis. The results, reported in Table 2, show that relative representations, when used at
training time, are not detrimental to performance in general. This is further shown in Tables 3 to 6
and 13 to 16, where a subset of the results compares the absolute and relative representations on a
variety of domains, datasets and tasks.

Overall, these results show that relative representations are effective when involved in end-to-end
training, without significant performance drops.

5 ZERO-SHOT MODEL STITCHING

In this section, we illustrate how the latent space communication demonstrated in Section 4 en-
ables zero-shot interoperability of pre-trained neural components. In previous works, such as Lenc
& Vedaldi (2015); Bansal et al. (2021), stitching layers are trainable linear projections that allow
swapping parts of different networks. Instead, relative representations unlock the possibility of zero-
shot stitching different neural components, treating them as frozen black-box modules.

We define a generic stitched model as the composition of an encoder, that embeds data, plus a de-
coder specialized in a downstream task (classification, reconstruction). The stitching operation is
always performed without training or fine-tuning, in a zero-shot fashion. Hereafter, we showcase
stitching capabilities across combinations of different stochasticity sources (Figure 4 and table 3),
neural architectures (Tables 4 and 5) or datasets (Table 6). Finally, we present strong real-world ap-
plications in NLP (Section 5.2) and CV (Section 5.3), e.g. zero-shot predictions on novel languages.
Additional implementation details are given in the supplementary materials.
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Figure 4: Reconstruction examples. Each column is a different image, row pairs are different archi-
tectures. In each pair, we first report the non-stitched reconstructions, then the stitched ones.

5.1 IMAGE RECONSTRUCTION

Experimental setting. We perform zero-shot stitching with AEs and VAEs trained end-to-end
on several image datasets. For each combination of model and dataset, we perform five trainings,
identical but with different seeds. Thus, we zero-shot stitch together the resulting encoders and
decoders. The stitching operation simply consists of composing an encoder with a decoder that is
trained on a different seed.

Result analysis. In Figure 4 the stitched models that employ absolute representations (Abs.) produce
erroneous predictions, since the latent spaces obtained from distinct trainings are incompatible. In-
terestingly, although the absolute VAE does not produce compatible latent spaces, it is regularized,
thus all embeddings produced by the encoders correspond to wrong but semantically meaningful
reconstructions. Relative representations (Rel.) exhibit almost indistinguishable reconstructions be-
tween the models trained end-to-end and the stitched ones. Quantitative results are in Table 3.

Overall, these results prove that relative representations are invariant to training stochasticity.

Table 3: Stitching performance. The MSE (± std) between the ground truth X and the reconstruc-
tions is computed over 5 different seeds. Stitching with our relative representations yields an error
up to two orders of magnitude less than the absolute counterpart.

MNIST F-MNIST CIFAR-10 CIFAR-100 MSE ↓

A
E A

bs
. Non-Stitch. 0.66± 0.02 1.57± 0.03 1.94± 0.08 2.13± 0.08 1.58± 0.05

Stitch. 97.79± 2.48 120.54± 6.81 86.74± 4.37 97.17± 3.50 100.56± 4.29

R
el

. Non-Stitch. 1.18± 0.02 3.59± 0.04 2.83± 0.13 3.50± 0.08 2.78± 0.07
Stitch. 2.83± 0.20 6.37± 0.29 5.39± 1.18 18.03± 12.46 8.16± 3.53

VA
E A

bs
. Non-Stitch. 1.31± 0.04 4.38± 0.03 2.68± 0.06 3.00± 0.03 2.84± 0.04

Stitch. 98.51± 1.49 118.96± 2.96 69.02± 1.54 78.57± 1.88 91.27± 1.97

R
el

. Non-Stitch. 2.97± 0.14 6.81± 0.06 5.18± 0.22 5.93± 0.14 5.22± 0.14
Stitch. 13.43± 6.79 24.03± 13.15 11.20± 3.15 11.23± 2.38 14.97± 6.37

5.2 TEXT CLASSIFICATION

In this Section, we show practical examples of the use of parallel anchors (Sec 3.1).

Experimental setting. We consider two different text classification settings.

Cross-lingual: given a review predict the associated star rating, done on multi-lingual data from
the Amazon Reviews dataset (Keung et al., 2020). Following the original paper, we work on
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Table 4: Cross-lingual stitching performance comparison. The table reports the mean weighted F1
(± std) and MAE on Amazon Reviews coarse-grained, across 5 seeds.

Absolute Relative

Translated Wikipedia

Decoder Encoder FScore MAE FScore MAE FScore MAE

en

en 91.54± 0.58 0.08± 0.01 90.06± 0.60 0.10± 0.01 90.45± 0.52 0.10± 0.01
es 43.67± 1.09 0.56± 0.01 82.78± 0.81 0.17± 0.01 78.53± 0.30 0.21± 0.00
fr 54.41± 1.61 0.45± 0.02 78.49± 0.66 0.21± 0.01 70.41± 0.57 0.29± 0.01
ja 48.72± 0.90 0.51± 0.01 65.72± 0.55 0.34± 0.01 66.31± 0.80 0.34± 0.01

Table 5: Cross-architecture stitching performance comparison. The table reports the mean weighted
F1 (± std) for each dataset, across 5 different seeds.

TREC DBpedia Amazon Reviews

Coarse Fine

A
bs

. Non-Stitch 91.70± 1.39 98.62± 0.58 87.81± 1.58 55.35± 3.19
Stitch 21.49± 3.64 6.96± 1.46 49.58± 2.95 19.01± 2.04

R
el

. Non-Stitch 88.08± 1.37 97.42± 2.05 85.08± 1.93 48.92± 3.57
Stitch 75.89± 5.38 80.47± 21.14 72.37± 7.32 33.24± 7.21

a binarized version of the task, with FScore and MAE as metrics. In the supplementary material,
we report results on the fine-grained formulation. We adopt four different pre-trained language-
specific RoBERTa transformers (Liu et al., 2019) and evaluate their zero-shot stitching performance
on languages never seen by the classifier. We use parallel anchors in two modalities: i) Translated:
consider English reviews translated2 into the other languages; ii) Wikipedia: adopt an external cor-
pus, WikiMatrix (Schwenk et al., 2021), providing parallel sentences extracted from Wikipedia.

Cross-architecture: assessed on three different datasets: TREC (coarse) (Hovy et al., 2001),
DBpedia (Zhang et al., 2015), Amazon Reviews (English split). We adopt two different pre-
trained BERT (Devlin et al., 2019) transformers (cased and uncased version), ELECTRA (Clark
et al., 2020) and RoBERTa.

Result analysis. With these results, we show for the first time that it is possible to learn to solve a
downstream task on a specific language or transformer, and perform predictions on another.

Tables 4 and 5 show how the relative representations allow reusing a trained classification head
across different languages or encoder architectures. Models stitched with absolute representations
show performance that is comparable to random guessing across the board, proving that relative
representations are a key element for the success of this kind of zero-shot stitching. Indeed, one can
only stitch together models with absolute representations if they happen to have the same latent di-
mensionality. Moreover, the anchor selection results in Table 4 highlight the robustness that relative
representations have on the choice of anchors, even when they are noisy (Translated case), or their
distribution differs from the one of the downstream task (Wikipedia case), as long as their encoding
can be handled correctly by the encoder. In our case, the encoder is pre-trained to represent a variety
of texts in a specific language, thus, even if WikiMatrix has a completely different domain from
Amazon Reviews, the transformer still computes a meaningful and comparable representation
with those of the reviews. We report in Tables 13 and 14 complete results on all languages
combination, and in Table 15 the performance obtained by a multi-lingual transformer. To the best
of our knowledge, it is the only alternative to obtaining compatible representations across languages.

According to these results, relative representations show invariance to different architectures and
data distribution shifts (e.g., different train languages).

2We used the =GOOGLETRANSLATE function available in Google Sheets.
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5.3 IMAGE CLASSIFICATION

In this Section, we show practical examples of the use of OOD anchors (Sec 3.1).

Table 6: Stitching performance comparison with different encoding techniques. The table reports
the mean weighted F1 (± std) on CIFAR-100 coarse-grained and ImageNet1k, across 5 seeds.

CIFAR-100 ImageNet1k

Decoder Encoder Absolute Relative Absolute Relative

rexnet-100

rexnet-100 82.06± 0.15 80.22± 0.28 73.78± 0.29 72.61± 0.16
vit-base-patch16-224 - 54.98± 0.44 - 37.39± 0.36
vit-base-resnet50-384 - 53.33± 0.37 - 42.36± 0.36
vit-small-patch16-224 - 59.82± 0.32 - 43.75± 0.27

vit-base-patch16-224

rexnet-100 - 76.81± 0.49 - 30.78± 0.81
vit-base-patch16-224 93.15± 0.05 91.94± 0.10 80.91± 0.29 78.86± 0.33
vit-base-resnet50-384 6.21± 0.33 81.42± 0.38 0.07± 0.05 44.72± 0.57
vit-small-patch16-224 - 84.29± 0.86 - 48.31± 0.72

vit-base-resnet50-384

rexnet-100 - 79.79± 0.43 - 53.46± 0.68
vit-base-patch16-224 4.69± 0.07 84.46± 0.19 0.08± 0.04 62.21± 0.54
vit-base-resnet50-384 91.41± 0.09 90.77± 0.16 82.55± 0.30 81.88± 0.16
vit-small-patch16-224 - 84.66± 0.16 - 61.32± 0.36

vit-small-patch16-224

rexnet-100 - 75.35± 0.41 - 37.58± 0.44
vit-base-patch16-224 - 81.23± 0.31 - 50.08± 0.63
vit-base-resnet50-384 - 78.35± 0.69 - 45.45± 1.41
vit-small-patch16-224 90.07± 0.19 88.85± 0.44 77.73± 0.41 76.36± 0.40

Experimental setting. We consider a classification task on ImageNet1k and CIFAR-100 with
coarse labels (20), and 4 different pre-trained image encoders: three variants of the ViT transformer
(Dosovitskiy et al., 2020) and RexNet (Han et al., 2020).

Result analysis. The results in Table 6 highlight how the relative representations allow to stitch
modules with different encoding dimensionality, since the encodings are converted to a represen-
tation with size equal to the number of anchors. Further, the results demonstrate the ability to
generalize and perform zero-shot stitching on CIFAR-100, although that data was never seen by
the encoder since it is a frozen transformer trained on ImageNet1k. Interestingly, rexnet-100
is the only transformer whose latent dimensionality is higher than the number of anchors, and the
biggest drop in stitching performance happens when the decoder is trained on it. This suggests the
number of anchors is an important hyperparameter; we refer to Figure 6 for a deeper analysis.

Overall, these results prove that relative representations can bridge general-purpose encoders and
pre-trained task-specific decoders.

6 CONCLUSION

In this work, we introduced the concept of relative representations to enable zero-shot latent
space communication, with several practical consequences as showcased in our discussion and
experiments. Our work proves that a latent semantic correspondence between data domains, when
present, can be exploited through a simple shift of representation, without resorting to sophisticated
processing or heavy training.

Limitations and future work. Our work is open to several follow-up directions. While in this
paper we considered the cosine similarity, different functions can enforce additional invariances
in the relative representation. The study of invariant latent spaces as a general direction has the
potential to lead to further impact; in Figure 7 we showed preliminary results of this possibility,
obtaining representations that are invariant to near-isometries with guaranteed bounded distortion
via vector quantization. Another interesting line of research to improve the representation expres-
sivity would be to estimate geodesic distances over the data manifold instead of adopting Euclidean
approximations. Similarly, we believe that the connections between the composition of the anchors
set A and the expressivity of relative representations demands additional research. For example, the
training cost is directly affected by the number and update frequency of the anchors. Finally, the
stitching procedure may be extended to multiple layers, promoting reusable network components.
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REPRODUCIBILITY STATEMENT

We describe in detail the relative representation computation in Section 3.1. We describe the ex-
perimental settings for the various scenarios, and refer to the supplementary material for further
implementation details (Appendix A.5). Moreover, we release a well-documented and modular
codebase, with the relative representation layer being implemented as a stand-alone PyTorch mod-
ule. All the checkpoints used in the experiments are versioned with DVC (Kuprieiev et al., 2022)
to easily reproduce all the figures and tables. The stand-alone module allows the integration of the
relative representations in any existing neural network effortlessly.
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de la Iglesia Castro, Fábio Santos, Aman Sharma, Dave Berenbaum, Zhanibek, Dani Hodovic,
daniele, Nikita Kodenko, Andrew Grigorev, Earl, Nabanita Dash, George Vyshnya, Ronan Lamy,
maykulkarni, Max Hora, Vera, and Sanidhya Mangal. Dvc: Data version control - git for data &
models, 2022. URL https://doi.org/10.5281/zenodo.7083378.

Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.
Word translation without parallel data. In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net, 2018. URL https://openreview.net/forum?id=H196sainb.

Y Lecun, L Bottou, Y Bengio, and P Haffner. Gradient-based learning applied to document recog-
nition. Proc. IEEE, 86(11):2278–2324, 1998.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equivari-
ance and equivalence. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pp. 991–999. IEEE Computer Society, 2015. doi: 10.
1109/CVPR.2015.7298701. URL https://doi.org/10.1109/CVPR.2015.7298701.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John E. Hopcroft. Convergent learning: Do
different neural networks learn the same representations? In Yoshua Bengio and Yann LeCun
(eds.), 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/
1511.07543.

11

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2007.00992
https://arxiv.org/abs/2007.00992
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://aclanthology.org/2020.emnlp-main.369
https://aclanthology.org/2020.emnlp-main.369
http://proceedings.mlr.press/v97/kornblith19a.html
http://proceedings.mlr.press/v97/kornblith19a.html
https://arxiv.org/abs/2106.02584
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.5281/zenodo.7083378
https://openreview.net/forum?id=H196sainb
https://doi.org/10.1109/CVPR.2015.7298701
http://arxiv.org/abs/1511.07543
http://arxiv.org/abs/1511.07543


Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv preprint, abs/1907.11692, 2019. URL https://arxiv.org/abs/1907.
11692.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. ArXiv preprint, abs/1301.3781, 2013. URL https://arxiv.org/
abs/1301.3781.

Ari S. Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similar-
ity in neural networks with canonical correlation. In Samy Bengio, Hanna M. Wallach,
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A APPENDIX

A.1 LATENT SPACE ISOMETRIES

In Figure 1, multiple trainings of the same two-dimensional AE produce isometric latent spaces; in
Figure 5 we show this property also holds on AEs with a high-dimensional bottleneck. In the first
row, PCA is fitted indipendently in each column, and since the PCA transformation produces the
same output everywhere the latent spaces are isometric. In the second row, PCA is fitted only on the
first latent space; since in this case the PCA transformations produces different outputs, the latent
spaces although isometric are extrinsically different.

A.2 ANCHORS ANALYSIS

The cardinality of the anchors set A and the choice of specific anchors is crucial to the quality of the
relative representations. At the extreme, selecting one single anchor or the same repeated data points
for all anchors, will produce collapsed relative representations. We believe that additional research
is required to obtain a better understanding on the optimal choice for A. Questions like “Are anchors
set composed only by stopwords worse than the ones composed by meaningful and diverse words?”
require empirical evidence and could help revealing the semantics of the latent space. Indeed, each
anchor is associated with a dimension in a relative representation; one could inspect the anchor data
point to get a sense of the meaning of that latent dimension.

Below, we report a preliminary study on the performance sensitivity against the cardinality of the
anchors set. In Figure 6 we report the performance on the node classification task on Cora, with
a model trained end-to-end adopting the relative representations while training, and on image clas-
sification tasks on CIFAR-100, with a frozen encoder. The performance improves monotonically
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Figure 5: Latent spaces learned by distinct trainings of the same high-dimensional AE on the MNIST
dataset. Each column is the latent space obtained by the AE with a different seed. On the first row,
the dimensionality reduction is performed through PCAs fitted independently on each latent space,
meanwhile, on the second row PCA is fitted on the leftmost latent space and then applied to all of
them.

as the number of anchors increase when the absolute representations are frozen (right). Differently,
training models end-to-end proves to be more susceptible to model collapse and instabilities, as in-
creasing the number of anchors does not always improve the performance (left). Further research
on the relation between the absolute latent space dimensionality and the relative representation di-
mensionality (i.e., the number of anchors) is needed to clarify how the two quantities impact the
performance, when training end-to-end or not.
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Figure 6: Accuracy vs Number of anchors. Each point is a trained model. Left: Trained embedder
on Cora, node classification. Right: Frozen transformer on Cifar100 coarse-grained, image classi-
fication. Left is less stable because the absolute embeddings are trained, and we are working on a
domain that is less stable (graphs). Some collapsed examples are not visualized.

A.3 QUASI-ISOMETRY INVARIANCE WITH GUARANTEED BOUNDS

In this section, we explore a slightly modified version of the similarity function adopted in the main
paper. The experimental setting is the same as in Section 4.1. We want to measure the similarity be-
tween pairs of absolute embeddings and their relative counterparts. To get some kind of quantitative
measure, we add a similarity score calculated as the pairwise cosine distance between the two em-
bedding types, averaged. Therefore, a lower score indicates the spaces are more similar. On top of
the standard relative representations, the ones computed with sim = SC , here we try to improve the
similarity measure with guaranteed robustness to quasi-isometries up to a desired distortion bound.
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In Figure 7 we report preliminary results that adopt this technique: a vector-quantized similarity
function produces relative representations which are more similar (they have a lower score). The
vector-quantization is done through agglomerative clustering on the absolute embeddings at various
thresholds t. We leave to future works the study of the trade-off between a guaranteed bound on the
near-isometries invariance and the expressiveness of the resulting representations.
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Abs. Rel. Rel. Qnt. t = 1 Rel. Qnt. t = 1.5 Rel. Qnt. t = 2

Score ↓ 3.30 1.24 1.19 1.09 1.02

Figure 7: The FastText and Word2Vec embeddings of a subset of the English dictionary. The
score is the pairwise distance average between the two embedding types, thus a lower score indicates
the spaces are more similar. The absolute representations appear very dissimilar meanwhile the
relative representations yield almost identical spaces. Quantizing the absolute representations by
performing agglomerative clustering with distance threshold t produces even more similar spaces.

A.4 DATASET INFORMATION

In Table 7 we summarize the datasets utilized in our work, and for each one, we specify the number
of classes, to give an idea about the classification difficulty.

Table 7: All the datasets utilized in our work with their number of classes.

Dataset Number of Classes

Im
ag

e

MNIST 10
Fashion MNIST 10
CIFAR-10 10
CIFAR-100 20 (coarse) — 100 (fine)
ImageNet1k 1000

G
ra

ph Cora 7
CiteSeer 6
PubMed 3

Te
xt TREC 6 (coarse) — 50 (fine)

DBpedia 14
Amazon Reviews 2 (coarse) — 5 (fine)

A.5 IMPLEMENTATION DETAILS

In this Section, following the corresponing sections in the main paper, we report implementation
details for all the experimental settings considered.

Tools & Technologies In all the experiments presented in this work, the following tools were used:

• PyTorch Lightning, to ensure reproducible results while also getting a clean and modular
codebase;
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• Weights and Biases, to log experiments and compare runs across huge sweeps;

• Transformers by HuggingFace, to get ready-to-use transformers for both text and images;

• Datasets by HuggingFace, to access most of the NLP datasets and ImageNet for CV;

• DVC, for data versioning;

• PyTorch Geometric, to handle graph datasets and get ready-to-use GNN architectures.

A.5.1 WORD EMBEDDINGS

For both the Figure and the Table in Section 4.1, the number of anchors is set to 300 for a fair
comparison with the dimensionality of the original spaces. For visualization purposes, we needed the
figure to both show an easy clusterable and restricted set of word embeddings. They are obtained by
subsampling the shared vocabulary with the following procedure: we select 4 random pivot words,
and for each of them we consider the top-200 words in their neighborhood. This results in a total of
800 points divided in 4 clusters, the ones used only for the visualization part. For the quantitative
part (table results), we select 20K random words from the shared vocabulary with a fixed seed for
reproducibility purposes.

A.5.2 LATENT DISTANCE AS A PERFORMANCE PROXY

The hyperperameters used in Section 4.2 are summarized in Table 8.

Table 8: The reference model and exhaustive hyperparameter combinations pertaining Section 4.2.

Hyperparameter Reference Model Sweep

Seed 1 0, 1, 2, 3, 4
Epochs 500 10, 30, 50
Number of layers 32 32, 64
Dropout Probability 0.5 0.1, 0.5
Hidden Activations ReLU ReLU, Tanh
Convolution Activation ReLU ReLU, Tanh
Optimizer Adam Adam, SGD
Learning Rate 0.02 0.01, 0.02
Graph Embedder GCNConv GCNConv, GINConv

A.5.3 TRAINING WITH ABSOLUTE VS. RELATIVE REPRESENTATIONS

Image Classification The architecture is a standard deep CNN. We run a sweep for each dataset
where we vary only the random seed (over 10 possible in total). We then aggregate by dataset and
encoding type to obtain the final results with their standard deviation.

Graph Classification We run a sweep identical to the one in Table 8 for the reference model,
except that we sweep on the “Number of layers” with two values: 32 and 64. Each configuration is
repeated with 10 different seeds, then we aggregate by dataset and encoding type to obtain the final
results with their standard deviation.

A.5.4 IMAGE RECONSTRUCTION

The relative and absolute models appearing in Figure 4 are vanilla AEs and VAEs, the same for all
the datasets, and have a comparable number of trainable parameters. Their architecture is composed
by simple convolutions, deconvolutions and mean squared error as reconstruction loss. The number
of anchors is 500 and the latent dimensionality of the absolute representations is 500.

A.5.5 TEXT CLASSIFICATION

We report in Tables 9 to 11 details on the transformers and anchors adopted in Section 5.2.
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Table 9: The HuggingFace transformers employed in Section 5.2 to tackle the Cross-lingual setting.

Language HuggingFace transformers name Encoding Dim

English roberta-base 768
Spanish PlanTL-GOB-ES/roberta-base-bne 768
French ClassCat/roberta-base-french 768
Japanese nlp-waseda/roberta-base-japanese 768

Table 10: The HuggingFace transformers employed in Section 5.2 to tackle the Cross-architecture
setting.

HuggingFace transformers name Encoding Dim

bert-base-cased 768
bert-base-uncased 768
google/electra-base-discriminator 768
roberta-base 768

Preprocessing Following the original work in which the Amazon Reviews dataset was pro-
posed (Keung et al., 2020), we utilize both the title and body of each review. We differ in not using
the category and in how we merge them; namely, we add the title as prefix for the body and add a
full stop as separator when needed (avoiding duplicates). To obtain a single latent encoding for each
sample, with fixed shape, we take the last hidden state and select the representation corresponding
to the [CLS] token.

Wikipedia anchors We use WikiMatrix, a corpus of sentences extracted from Wikipedia. The
sentences are parallel between pairs of languages (i.e., same sentences translated in two languages),
and since we are looking for a collection of parallel anchors between all 4 languages, we decided
to use the English language as a pivot to compute the intersection. To get the final results, we
considered only the sentences with margin score ≥ 1.06, getting high-quality sentence alignments.
In Table 11 we show the total number of parallel sentences when computing the intersections. We
randomly selected 768 samples to use as anchors.

A.5.6 IMAGE CLASSIFICATION

The details of the transformers used in Section 5.3 are summarized in Table 12.

A.6 ADDITIONAL RESULTS

In this section we report additional results on the correlation between latent similarity and perfor-
mance in Figure 8, results on the multilingual stitching both with Amazon coarse-grained in Ta-
ble 13 and fine-grained in Table 14, results on the image classification stitching on CIFAR-100

Table 11: WikiMatrix analysis. Each row shows the number of parallel sentences having a transla-
tion available in all the languages of that row. Since we consider all four languages, we have 3338
parallel sentences available.

Languages Number of Sentences

en, es 2302527
en, ja 264259
en, fr 1682477
en, es, fr 23200
en, es, ja 147665
en, fr, ja 20990
en, es, fr, ja 3338
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Table 12: Timm transformers used in Section 5.3.

Version Timm model name Encoding Dim Training data

ViT vit base patch16 224 768 JFT-300M, ImageNet
ViT vit small patch16 224 384 ImageNet
ViT vit base resnet50 384 768 ImageNet
RexNet rexnet 100 1280 ImageNet

fine-grained in Table 16. Moreover, we evaluate the stitching performance of a multilingual trans-
former in Table 15.

Figure 8: Correlation plot between performance and latent similarity with the reference model for
multiple different models, over time.
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Table 13: Stitching performance comparison with different encodings techniques. The table reports
the mean weighted F1 (± std) and MAE classification performance on Amazon Reviews coarse-
grained, across 5 different seeds. All the language pairs are shown.

Absolute Relative

Translated Wikipedia

Decoder Encoder FScore MAE FScore MAE FScore MAE

en

en 91.54± 0.58 0.08± 0.01 90.06± 0.60 0.10± 0.01 90.45± 0.52 0.10± 0.01
es 43.67± 1.09 0.56± 0.01 82.78± 0.81 0.17± 0.01 78.53± 0.30 0.21± 0.00
fr 54.41± 1.61 0.45± 0.02 78.49± 0.66 0.21± 0.01 70.41± 0.57 0.29± 0.01
ja 48.72± 0.90 0.51± 0.01 65.72± 0.55 0.34± 0.01 66.31± 0.80 0.34± 0.01

es

en 33.23± 1.00 0.66± 0.01 78.68± 2.74 0.21± 0.03 76.65± 3.23 0.23± 0.03
es 91.64± 1.02 0.08± 0.01 89.96± 0.77 0.10± 0.01 89.62± 0.94 0.10± 0.01
fr 47.66± 0.70 0.52± 0.01 78.57± 1.80 0.21± 0.02 75.25± 0.76 0.25± 0.01
ja 53.10± 2.27 0.46± 0.02 67.69± 0.24 0.32± 0.00 61.84± 0.61 0.38± 0.01

fr

en 51.00± 2.63 0.49± 0.03 83.32± 1.80 0.17± 0.02 75.55± 0.37 0.24± 0.00
es 51.96± 2.81 0.48± 0.03 82.50± 0.83 0.17± 0.01 77.12± 0.88 0.23± 0.01
fr 88.22± 0.75 0.12± 0.01 85.68± 1.37 0.14± 0.01 86.45± 0.96 0.13± 0.01
ja 50.32± 4.16 0.50± 0.04 69.38± 0.73 0.31± 0.01 62.79± 0.27 0.37± 0.00

ja

en 53.82± 2.62 0.46± 0.03 68.66± 3.62 0.31± 0.04 70.26± 3.16 0.29± 0.03
es 44.91± 2.21 0.55± 0.02 70.37± 6.94 0.29± 0.06 58.54± 1.21 0.41± 0.01
fr 66.46± 1.30 0.34± 0.01 76.49± 1.13 0.23± 0.01 63.94± 2.70 0.36± 0.02
ja 83.30± 0.67 0.17± 0.01 81.04± 0.82 0.19± 0.01 80.80± 1.25 0.19± 0.01

Table 14: Stitching performance comparison with different encodings techniques. The table reports
the mean weighted F1 (± std) and MAE classification performance on Amazon Reviews fine-
grained, across 5 different seeds. All the language pairs are shown.

Absolute Relative

Translated Wikipedia

Decoder Encoder FScore MAE FScore MAE FScore MAE

en

en 65.46± 2.89 0.38± 0.02 61.18± 1.92 0.44± 0.02 62.36± 2.23 0.43± 0.02
es 22.70± 0.41 1.39± 0.03 51.67± 1.20 0.62± 0.01 45.40± 0.68 0.76± 0.01
fr 30.75± 0.67 1.19± 0.02 49.18± 0.83 0.69± 0.02 40.29± 0.90 0.91± 0.02
ja 24.85± 0.91 1.37± 0.07 37.34± 1.49 0.99± 0.02 37.73± 0.70 1.01± 0.02

es

en 21.24± 0.81 1.43± 0.07 51.02± 2.54 0.68± 0.05 47.70± 5.08 0.73± 0.10
es 61.29± 3.04 0.43± 0.02 57.89± 3.80 0.48± 0.03 57.96± 4.40 0.48± 0.03
fr 29.02± 0.85 1.26± 0.05 48.40± 1.02 0.71± 0.02 44.92± 1.83 0.77± 0.01
ja 29.23± 1.32 1.22± 0.02 37.22± 1.56 1.03± 0.04 34.56± 0.87 1.08± 0.04

fr

en 27.39± 1.22 1.23± 0.06 45.55± 3.55 0.76± 0.09 39.01± 1.25 0.88± 0.06
es 29.47± 3.68 1.18± 0.07 40.29± 1.72 0.90± 0.04 41.29± 2.01 0.83± 0.04
fr 56.40± 1.89 0.51± 0.01 53.58± 0.70 0.57± 0.01 54.23± 0.95 0.56± 0.01
ja 25.92± 1.31 1.25± 0.05 38.60± 1.03 0.96± 0.02 35.22± 0.56 1.08± 0.02

ja

en 29.36± 0.59 1.17± 0.04 38.19± 2.28 0.88± 0.03 36.57± 1.72 0.98± 0.02
es 25.64± 1.77 1.28± 0.04 34.23± 2.62 1.00± 0.05 33.16± 2.28 1.06± 0.03
fr 31.79± 1.91 1.06± 0.02 38.50± 2.46 0.89± 0.02 36.68± 3.14 1.00± 0.05
ja 54.09± 1.35 0.60± 0.02 50.89± 1.70 0.65± 0.02 51.64± 1.47 0.65± 0.02
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Table 15: Stitching performance comparison on XLM-R, a multilingual model by design. The table
reports the mean weighted F1 (± std) and MAE classification performance on Amazon Reviews
fine-grained, across 5 different seeds.

Absolute Relative
Decoder Encoder FScore MAE FScore MAE

en

en 65.27± 0.94 0.41± 0.01 58.24± 1.92 0.51± 0.03
es 59.55± 0.76 0.48± 0.01 52.81± 1.57 0.62± 0.02
fr 58.58± 1.04 0.49± 0.01 54.01± 1.34 0.59± 0.02
ja 57.98± 0.77 0.52± 0.01 48.47± 2.67 0.71± 0.04

es

en 60.32± 1.50 0.47± 0.01 45.69± 2.19 0.87± 0.07
es 61.25± 1.74 0.44± 0.01 57.61± 0.73 0.51± 0.01
fr 59.50± 1.41 0.47± 0.01 45.16± 3.30 0.83± 0.09
ja 58.24± 1.31 0.51± 0.02 41.14± 1.76 0.99± 0.05

fr

en 58.00± 4.21 0.49± 0.03 52.37± 1.66 0.66± 0.03
es 56.87± 3.79 0.49± 0.03 54.99± 0.46 0.57± 0.01
fr 57.99± 3.88 0.47± 0.02 57.00± 0.90 0.52± 0.01
ja 55.83± 3.32 0.53± 0.03 39.15± 1.21 1.02± 0.03

ja

en 59.53± 1.73 0.48± 0.01 39.46± 2.34 1.04± 0.07
es 57.02± 1.36 0.51± 0.00 40.74± 2.75 0.97± 0.09
fr 57.48± 1.06 0.51± 0.01 43.36± 3.70 0.89± 0.11
ja 61.43± 0.97 0.45± 0.01 57.67± 1.17 0.51± 0.01

Table 16: Stitching performance comparison with different encodings techniques. The table reports
the mean weighted F1 (± std) classification performance on CIFAR-100 fine-grained, across 5
different seeds.

Decoder Encoder Absolute Relative

rexnet-100

rexnet-100 72.77± 0.19 71.39± 0.18
vit-base-patch16-224 - 40.68± 0.50
vit-base-resnet50-384 - 38.18± 0.24
vit-small-patch16-224 - 44.11± 0.84

vit-base-patch16-224

rexnet-100 - 57.81± 0.39
vit-base-patch16-224 88.69± 0.14 87.05± 0.34
vit-base-resnet50-384 1.08± 0.19 66.65± 1.79
vit-small-patch16-224 - 73.73± 0.60

vit-base-resnet50-384

rexnet-100 - 66.91± 0.79
vit-base-patch16-224 1.10± 0.09 75.70± 0.68
vit-base-resnet50-384 85.85± 0.18 85.04± 0.38
vit-small-patch16-224 - 75.52± 0.36

vit-small-patch16-224

rexnet-100 - 56.60± 0.39
vit-base-patch16-224 - 70.14± 0.46
vit-base-resnet50-384 - 62.85± 1.22
vit-small-patch16-224 84.11± 0.14 83.24± 0.13
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