Robust figure extraction on textured background: a game-theoretic approach

Abstract

Feature-based image matching relies on the assumption that the features contained in the model are distinctive enough. When both model and data present a sizeable amount of clutter, the signal-to-noise ratio falls and the detection becomes more challenging. If such clutter exhibits a coherent structure, as it is the case for textured background, matching becomes even harder. In fact, the large amount of repeatable features extracted from the texture dims the strength of the relatively few interesting points of the object itself. In this paper we introduce a game-theoretic approach that allows to distinguish foreground features from background ones. In addition the same technique can be used to deal with the object matching itself. The whole procedure is validated by applying it to a practical scenario and by comparing it with a standard point-pattern matching technique.

Publication
Proc. Int’l Conference on Pattern Recognition (ICPR)
Emanuele Rodolà
Emanuele Rodolà
Full Professor