This website uses cookies to ensure you get the best experience on our website.
Learn more
Got it!
Home
News
Publications
People
NeXuS
Contact
featured
MERGE3: Efficient Evolutionary Merging on Consumer-grade GPUs
Evolutionary model merging enables the creation of high-performing multi-task models but remains computationally prohibitive for …
Tommaso Mencattini
,
Adrian R. Minut
,
Donato Crisostomi
,
Andrea Santilli
,
Emanuele Rodolà
Cite
arXiv
GitHub
Task Singular Vectors: Reducing Task Interference in Model Merging
Task Arithmetic has emerged as a simple yet effective method to merge models without additional training. However, by treating entire …
Antonio Andrea Gargiulo
,
Donato Crisostomi
,
Maria Sofia Bucarelli
,
Simone Scardapane
,
Fabrizio Silvestri
,
Emanuele Rodolà
Cite
arXiv
GitHub
Multi-Source Diffusion Models for Simultaneous Music Generation and Separation
In this work, we define a diffusion-based generative model capable of both music synthesis and source separation by learning the score …
Giorgio Mariani
,
Irene Tallini
,
Emilian Postolache
,
Michele Mancusi
,
Luca Cosmo
,
Emanuele Rodolà
Cite
PDF
URL
arXiv
GitHub
ICLR 2024 notable top 1.2% (oral)
ASIF: Coupled Data Turns Unimodal Models to Multimodal Without Training
CLIP proved that aligning visual and language spaces is key to solving many vision tasks without explicit training, but required to …
Antonio Norelli
,
Marco Fumero
,
Valentino Maiorca
,
Luca Moschella
,
Emanuele Rodolà
,
Francesco Locatello
Cite
PDF
html
arXiv
Poster
Thread
GitHub
NeurIPS 2023
Accelerating Transformer Inference for Translation via Parallel Decoding
Autoregressive decoding limits the efficiency of transformers for Machine Translation (MT). The community proposed specific network …
Andrea Santilli
,
Silvio Severino
,
Emilian Postolache
,
Valentino Maiorca
,
Michele Mancusi
,
Riccardo Marin
,
Emanuele Rodolà
PDF
Cite
arXiv
GitHub
Relative representations enable zero-shot latent space communication
Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. …
Luca Moschella
,
Valentino Maiorca
,
Marco Fumero
,
Antonio Norelli
,
Francesco Locatello
,
Emanuele Rodolà
PDF
Cite
URL
GitHub
Slides
ICLR 2023 notable top 5%
Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning
Predicting interactions between proteins and other biomolecules solely based on structure remains a challenge in biology. A high-level …
Pablo Gainza
,
Freyr Sverrisson
,
Federico Monti
,
Emanuele Rodolà
,
Davide Boscaini
,
Michael M. Bronstein
,
Bruno Correia
Cite
URL
GitHub
Isospectralization, or how to hear shape, style, and correspondence
The question whether one can recover the shape of a geometric object from its Laplacian spectrum (‘hear the shape of the …
Luca Cosmo
,
Mikhail Panine
,
Arianna Rampini
,
Maks Ovsjanikov
,
Michael M. Bronstein
,
Emanuele Rodolà
Cite
PDF
GitHub
Deep Functional Maps: Structured Prediction for Dense Shape Correspondence
We introduce a new framework for learning dense correspondence between deformable 3D shapes. Existing learning based approaches model …
Or Litany
,
Tal Remez
,
Emanuele Rodolà
,
Alex M. Bronstein
,
Michael M. Bronstein
Cite
PDF
URL
GitHub
Cite
×