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Abstract
In graph learning, maps between graphs and their
subgraphs frequently arise. For instance, when
coarsening or rewiring operations are present
along the pipeline, one needs to keep track of
the corresponding nodes between the original and
modified graphs. Classically, these maps are rep-
resented as binary node-to-node correspondence
matrices, and used as-is to transfer node-wise
features between the graphs. In this paper, we
argue that simply changing this map representa-
tion can bring notable benefits to graph learning
tasks. Drawing inspiration from recent progress
in geometry processing, we introduce a spectral
representation for maps that is easy to integrate
into existing graph learning models. This spectral
representation is a compact and straightforward
plug-in replacement, and is robust to topological
changes of the graphs. Remarkably, the repre-
sentation exhibits structural properties that make
it interpretable, drawing an analogy with recent
results on smooth manifolds. We demonstrate the
benefits of incorporating spectral maps in graph
learning pipelines, addressing scenarios where a
node-to-node map is not well defined, or in the ab-
sence of exact isomorphism. Our approach bears
practical benefits in knowledge distillation and
hierarchical learning, where we show compara-
ble or improved performance at a fraction of the
computational cost.

1. Introduction
Graph learning offers a powerful set of techniques for un-
derstanding complex data, which often call for downsam-
pling or rewiring operations to improve on scalability and
performance. One common approach is to perform com-
putations and training on a partial or modified version of
the graph, rather than the entire graph. For example, com-
putationally expensive operations can be performed on a
coarsened version of the graph, as demonstrated in works
such as (Deng et al., 2020). Additionally, graph rewiring,
which directly modifies the connectivity, creates an even
more challenging scenario (Chan & Akoglu, 2016; Brüel-

Gabrielsson et al., 2022). In these settings, a crucial aspect
that is often taken for granted is the data transfer between
graphs and their subgraphs. Recent studies have shown that
transferring information such as positional encoding from
a graph to its rewired versions can improve GNN perfor-
mance (Brüel-Gabrielsson et al., 2022), highlighting the
importance of effectively transferring information between
graphs. However, this task remains challenging in many
scenarios, particularly when the involved graphs are not
isomorphic. Although correspondences between nodes are
often provided, utilizing these correspondences as they are
may not always be the optimal solution, leaving room for
further improvement.

In this paper, we propose to shift to a spectral representation
as a way to compactly encode maps between graphs and
subgraphs in graph learning pipelines. The new representa-
tion is a straightforward replacement into existing models;
it is easy to compute, has a regularizing behavior leading
to improved downstream performance, and bears a natural
structure that is easy to interpret. From a technical stand-
point, the map representation is obtained via a change of
basis with respect to the eigenvectors of the graph Laplacian.
This idea, introduced a decade ago in the field of geometry
processing under then name of functional maps (Ovsjanikov
et al., 2012), has led to notable advancements in several
tasks in graphics and vision. However, the potential applica-
tion of this concept in graph learning has not been explored
so far.

We summarize our main contributions as follows:

• We propose the adoption of spectral representations for
maps between graphs and subgraphs. For the first time,
we show that such maps exhibit a special structure in
their coefficients, capturing the similarity between the
Laplacian eigenspaces of the two graphs.

• We conduct an empirical examination of the structure
of the functional map across a diverse range of graphs
and in various scenarios of partiality, including sub-
isomorphic and non-isomorphic graphs. Our findings
demonstrate that the map exhibits a distinct structure
in these contexts; see Figure 1 for examples.

• We focus on the problem of feature transfer and include
experiments showing practical applications, such as
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Figure 1: Spectral maps between a full graph (depicted on the left) and three different graphs, respectively: an isomorphic
graph (i), an isomorphic subgraph containing 80% of the original nodes (ii), and a non-isomorphic subgraph obtained by
randomly rewiring the former (iii). The green edges are novel and randomly added (10% of the total), the red edges are
randomly removed (10% of the total). The map representation still maintains a visible structure despite the significant
changes of connectivity that span several hops.

hierarchical embedding and knowledge distillation, on
graphs spanning a few dozen to tens of thousands of
nodes. In terms of performance and computational
complexity, we also demonstrate key benefits.

The present article is structured as follows: We provide
an overview of existing literature on graph-to-graph map-
pings and their significance in learning and non-learning
procedures in Section 2. Section 3 introduces the spectral
representation and its mathematical formalism, which are
fundamental for defining the spectral maps. Section 4 illus-
trates the utility of these maps by showcasing two examples
of learning pipelines where their application results in su-
perior performance. The validity of the properties inherited
by these representations is evaluated in various scenarios
in Section 5. Finally, in Section 6, we summarize the key
findings and discuss potential avenues for future research.

2. Related work
In this section, we review the literature on the use of maps
in graph learning models, where our method has a direct
relevance.

Maps for graph learning. Transferring information be-
tween non-isomorphic graphs is a challenging problem in
graph learning. This is especially relevant in scenarios such
as domain adaptation (Pilanci & Vural, 2020), meta-learning
(Yang et al., 2022b), and federated learning (Zhang et al.,
2021), where the information collected on a set of graphs
needs to be transferred to other graphs. In this paper we
focus on the problem of representing maps between graphs,
given a (possibly partial) node-to-node correspondence;
however, it is worth noting that there are several methods
that tackle the complementary problem of determining a
correspondence (Singh et al., 2008; Hermanns et al., 2021;
Man et al., 2016) when the latter is not provided as input.

Hierarchical graph embedding. Many learning-based
graph embedding algorithms, such as DeepWalk (Perozzi
et al., 2014) and node2vec (Grover & Leskovec, 2016),
do not scale to large graphs and struggle to capture long-
distance global relationships (Chen et al., 2018). To over-
come these problems, recent works (Chen et al., 2018; Deng
et al., 2020; Liang et al., 2021) proposed to compute a
hierarchy of coarsened graphs on which to compute the em-
beddings, and then lift the values up to the original graph.
In this framework, an important step is the propagation of
embeddings through the coarsened graphs, which requires
a proper refinement step to ensure the quality of the final
embedding. In particular, ensuring smooth propagation
between levels has been identified as a crucial element in
enhancing performance. In our experiments, we show how
the spectral representation can be easily adapted for this
step, with beneficial effects on the graph embedding task;
we refer to Section 4.2 for a detailed evaluation.

Knowledge distillation on graphs. The goal of knowledge
distillation is to transfer information from a large model to a
smaller one (Hinton et al., 2015). Recently, this framework
has been extended to graphs (Yang et al., 2020; Chen et al.,
2020; Yang et al., 2021). Specifically, (Yang et al., 2022a)
introduced the concept of geometric knowledge distillation,
which involves transferring graph topology information ex-
tracted by a GNN model from a graph G (Teacher) to a
target GNN model; importantly, the target GNN only has
access to a partial view of G (Student). In this paper, we
address this task by adopting the spectral representation
to enforce the similarity between the intermediate repre-
sentation learned by the teacher and the student (Section
4.3).
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Node2Vec GraphZoom Ours

Figure 2: The Node2Vec embedding is, from left to right,
applied to the coarsened graph, transferred to the full graph
with GraphZoom and with the spectral map. We remark the
smoothing effect of the spectral representation.

3. Background on spectral representation
Graphs and Laplacian eigenvectors. We consider undi-
rected, unweighted graphs G = (V,E) with nodes V and
edges E ⊆ V × V . We denote as A ∈ {0, 1}|V |×|V | the
adjacency matrix of G, which is a binary matrix where
A(i, j) = 1 if an edge connects node i to node j, and
A(i, j) = 0 otherwise.

The symmetric normalized Laplacian for G is defined as
the square matrix L = I − D−

1
2AD−

1
2 , where D is a

diagonal matrix of node degrees, with entries D(i, i) =∑|V |
j=1A(i, j). This linear operator is symmetric and pos-

itive semi-definite; it admits an eigendecomposition L =
ΦΛΦ>, where Λ is a diagonal matrix that contains the eigen-
values, and Φ is a matrix having as columns the correspond-
ing eigenvectors concatenated side by side. Throughout
this paper, we assume the eigenvalues (and correspond-
ing eigenvectors) to be sorted in non-descending order
0 = λ1 ≤ λ2 ≤ . . . ≤ 2; this is important for interpreting
the spectral maps that we define in the sequel.

Each eigenvector φl for l = 1, . . . , |V | has length |V |,
and can be interpreted as a scalar function defined on the
nodes of the graph; for this reason, we will refer to them as
eigenfunctions. The eigenfunctions form an orthonormal ba-
sis for the space of functions defined on the graph nodes (i.e.
Φ>Φ = Id). One may consider a subset of eigenfunctions,
namely those associated with the k smallest eigenvalues, to
compactly approximate a graph signal.

Functional maps for graphs. The representation we pro-
pose directly derives from the functional maps framework
for smooth manifolds (Ovsjanikov et al., 2012), extended
to the graph setting in (Wang et al., 2019; Hermanns et al.,
2021).

Consider two graphs G1 = (V1, E1) and G2 = (V2, E2)
and a binary matrix S encoding a node-to-node map T :
G2 → G1. Applying an orthogonal change of basis w.r.t.
bases Φ1,Φ2, we get to the representation:

C = Φ>2 SΦ1 , (1)

where Φ1 ∈ R|V1|×k,Φ2 ∈ R|V2|×k contain the first k
eigenvectors of the symmetrically normalized graph Lapla-
cians of G1 and G2 respectively, and S ∈ R|V1|×|V2| is a
matrix encoding the node-to-node correspondence. This ma-
trix C is easy to compute by simple matrix multiplication.
The size of C does not depend on the number of points in
G1 and G2, but only on the number k of basis functions.
In other words, C represents the linear transformation that
maps the coefficients of any given function f : V1 → R
expressed as linear combination of Φ1, to coefficients of
a corresponding function g : V2 → R expressed in the
eigenbasis Φ2.

Graph nodes may often come with numerical attributes en-
coding user identities in social networks, or positional en-
codings. We can model such data as a collection of functions
f : V1 → R. From Equation 1 we can transfer a function f
from G1 to G2 applying the following formula:

ĝ = Φ2CΦ>1 f , (2)

where Φ>1 projects f in its coefficients, C apply the spectral
transfer, Φ2 reconstucts the transfered signal ĝ.

4. Applications on subgraphs
From now on we consider the setting where we are given
a graph G1 and a possibly noisy subgraph G2 = (V2, E2)
of G1, such that V2 ⊆ V1 and E2 ⊆ E1. In this case,
Equation 1 still holds. Note that in some cases, one may
decide to invert the roles of the graphs G1 and G2, as in
Section 4.2. This does not affect the spectral representation
of the map.

4.1. Motivation

Our motivation starts from the observation that in many
practical cases, the eigenspaces of the normalized graph
Laplacian are well preserved under non-isomorphic transfor-
mations of the graph, including strong partiality, topological
perturbations, and edge rewiring.

According to Equation (1), each coefficient cij of C corre-
sponds to a dot product between φ2i and Sφ1j ; this measures
the correlation at corresponding nodes between a Laplacian
eigenvector φ2i ofG2, and a Laplacian eigenvector φ1j ofG1.
Each eigenvector φ1j is expressed as a linear combination of
images through S of the eigenvectors φ2i (i.e. Sφ2i ), and the
combination coefficients are stored in column j of C.

To explain with an example how the structure of C relates
to the graph eigenspaces, consider the example of the Min-
nesota graph in Figure 1. Suppose we map the full graph to
its permuted version (i). In this case, the two graphs have
the same eigenspaces due to the permutation equivariance of
Laplacian eigenvectors. Thus, the matrix C is diagonal with
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±1 along the diagonal because cij = 0 for i 6= j (due to or-
thogonality of the eigenvectors), while cii = ±1 (due to the
sign ambiguity of the eigenvectors). In the case of repeated
eigenvalues, one may observe small blocks of coefficients
along the diagonal due to the non-uniqueness of the choice
of the eigenvectors spanning high-dimensional eigenspaces.
When we map the full graph to its subgraph (ii), the two
graphs have partially similar eigenspaces, meaning that the
inner products between φ2i and Sφ1j tend to be close to zero
and close to ±1, but not exactly equal. The matrix C has
a sparse structure but is not necessarily diagonal. This is
because the eigenvectors on the subgraph correlate with
those of the full graph at different indices i 6= j – unlike
the full-to-full case, where the correspondence happens at
i = j. Therefore the spectral map matrices are not neces-
sarily diagonal but may present a different sparsity struc-
ture which depends on the particular graph and subgraph.

G1

2 5 10

G2

2 4 8

The inset figure shows an ex-
ample of this phenomenon.
The eigenfunctions of the
complete graph G1, and
those of the subgraphG2 still
correlate even if not necessar-
ily at the same index (see pair
5-4) and the correlation may
not be exact (see pair 10-8); the extent to which the eigen-
functions correlate is captured precisely by the structure of
C. In particular, we can see that the values of the Laplacian
eigenfunctions stay approximately the same (up to sign, in
the case of simple spectrum) at the nodes that are not di-
rectly involved in the perturbation – which is to say that
the eigenvectors of the partial graph G2, encoded in Φ2,
correlate strongly with the those of G1, encoded in Φ1. To
the best of our knowledge, this observation is not trivial
and has not been reported before. This simple fact leads to
the following important observation that is central to our
contribution:

The spectral representation allows us to represent the same
(or similar) subspace of smooth functions by truncating the
functional representation at the first k eigenfunctions

Since eigenfunctions align well, we can exploit the spec-
tral maps and the properties they inherit on the represen-
tation and transfer of signals. While classically, maps are
represented as binary matrices S whose dimensions scale
quadratically with the number of nodes in the graphs, this
observation allows us to use the spectral map as a compact
and sparse representation that still provides an efficient way
of transferring information between graphs. Furthermore,
as we will show in the rest of this section, the properties
inherited from this representation provide advantages in ap-
plications. In all the following experiments, we inject the
spectral representation in learning procedures only where in-
formation transfer is needed, leaving the rest of the pipeline

Table 1: Hierarchical embedding: Mean classification ac-
curacy on the task of node classification.

Graphzoom Ours (% eigs) Ours (fixed)

Node2Vec

Cora 0.77 0.79 (10%) 0.78 (5%)
Citeseer 0.64 0.67 (2.5%) 0.67 (5%)
Pubmed 0.79 0.80 (10%) 0.79 (5%)

Graph Walk

Cora 0.76 0.79 (15%) 0.77 (5%)
Citeseer 0.65 0.68(2.5%) 0.67 (5%)
Pubmed 0.78 0.80 (5%) 0.80 (5%)

GraphSAGE

Cora 0.72 0.74 (3%) 0.68 (5%)
Citeseer 0.55 0.59 (60%) 0.56 (5%)
Pubmed 0.74 0.74 (5%) 0.74 (5%)

unchanged. In Section 5, we show extensive empirical
evidence of this behavior and describe its practical conse-
quences.

4.2. Hierarchical Graph Embedding

Hierarchical Graph Embedding aims to learn a graph em-
bedding considering a hierarchy of coarsened graphs. First,
each level of the hierarchy is constructed from the original
graph. Then, an embedding is computed on the last level
(i.e. smallest subgraph), and finally it is lifted up to the
original graph. In this case, the correspondence between the
original graph and its subgraphs is given by construction.

In this section, we show that transferring the embeddings
across the hierarchy levels via the spectral map is beneficial
in the applications. To this end, we consider the state-of-the-
art Hierarchical Graph embedding approach GraphZoom
(Deng et al., 2020) to compute the coarsened graphs. Then,
we transfer the embedding using Equation (2) in the reverse
direction, as we transfer the signal from the subgraph to
the full graph. Equation (2) still holds, but G1 is now the
subgraph, and G2 is the full graph. As the results show, this
swap does not affect the performance of the map. The spec-
tral map is computed from the ground truth correspondences
obtained during the coarsening phase.

To evaluate performance, we tackle the task of node clas-
sification. The classification is performed by a linear logit
regression model that takes as input the embedding lifted
up through the hierarchy of graphs. As done in (Deng et al.,
2020), we consider two levels of coarsening. Table 1 shows
the node classification accuracy of our method compared
to GraphZoom (Deng et al., 2020) and a baseline n2n. We
consider here three graphs (Cora, Citeseer and Pubmed) and
three embedding algorithms (node2vec (Grover & Leskovec,
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2016), DeepWalk (Perozzi et al., 2014) and GraphSAGE
(Hamilton et al., 2017a)), similarly to (Deng et al., 2020).
The only hyperparameter of our approach is the number of
eigenvectors k employed in the spectral map computation.
In the last two rows of Table 1, we report the best accu-
racy obtained at varying percentage of eigenvectors (Ours)
and the accuracy obtained using the fixed percentage 5%
(Ours fixed). The GraphZoom method is replicated using
the parameters provided by the official code repository.

Regularizing behavior. Using k � n eigenvectors in the
construction of C has a regularizing effect on the map, akin
to a low-pass filtering of the correspondence. Figure 2 shows
on Cora an example of embedding transferred from the
coarsest level to the next in the hierarchy. We use a spectral
map computed with the first 5% eigenvectors (last column).
The spectral transfer performs an evident smoothing on the
embedding, compared to Graphzoom (middle column). As
further evidence, we plot the classification accuracy at vary-
ing percentages of eigenvectors (Figure 11 in Appendix C).
Importantly, the performance peaks with few eigenvectors
and then decreases when increasing the number of eigen-
vectors up to the complete base. In particular, when we use
all the eigenvectors Φ1 and Φ2 to construct C, Equation 1
corresponds to an orthogonal change of basis; therefore,
the representations S and C are equivalent and have the
same dimensions. Truncating the bases to the first k1 and
k2 eigenvectors, as described in Appendix A.3, yields a
low-rank approximation C ≈ S. In signal processing terms,
we see the matrix C as a band-limited representation of the
node-to-node correspondence S.

It was already demonstrated in (Nt & Maehara, 2019) and
(Li et al., 2019) that smoothing signals can improve perfor-
mance on graphs. And our results validate this idea once
again. Even if, the regularizing effect is desirable in many
cases but is traded off for a loss in accuracy if a precise node-
to-node correspondence is desired. On the one hand, if the
map C is used to transfer a smooth signal (e.g. node-wise
features like spectral positional encodings or carrying se-
mantic information depending on the data), then the loss in
accuracy is negligible since Laplacian eigenvectors are opti-
mal for representing smooth signals (Aflalo et al., 2015); on
the other hand, transferring non-smooth signals via a small
C has the effect of filtering out the high frequencies. If high
frequencies are desired, it is often sufficient just to increase
the values of k1, k2, leading to a bigger matrix C. In Sec-
tion 5.3, we analyse how the transferred signal changes at
different numbers of eigenvectors.

4.3. Geometric Knowledge Distillation

The aim of Geometric Knowledge Distillation (Yang et al.,
2022a) is to transfer topological knowledge from a teacher
model to a student model, which has only a partial vision

of the graph. In particular, the teacher model is trained on
G1 = (V1, E1) and the student on G2 = (V2, E2). In this
scenario, the spectral map can be used to align the features
that the teacher and student models are learning. For this
purpose, we define the following loss:

||CΦT
1 xt − ΦT

2 xs|| (3)

where xt ∈ R|V1|×d and xs ∈ R|V2|×d are the features
computed by the teacher and the student, Φ1 ∈ R|V1|×k

and Φ2 ∈ R|V2|×k are the eigenvectors on the teacher and
student graph respectively and C ∈ Rk×k is the spectral
map between the two graphs. We remark that both Φ1 and
Φ2 are precomputed before training time.

In Table 2, we compare the student trained with Equation (3)
with the methods proposed in (Yang et al., 2022a): gaussian
kernel (GKD-G), random kernel (GKD-R), sigmoid kernel
(GKD-S) and parametric kernel (PGKD). In the first three
rows, we also report the performance of the ORACLE model
(trained and tested on G1), TEACHER (trained on G1 and
tested on G2) and STUDENT (trained and tested on G2).
We consider two settings: node-aware where the subgraph’s
nodes are a subset of the full graph’s node V2 ⊂ V1; edge-
aware where the subgraph’s edges are a subset of the full
graph’s edges, but the nodes are the same E2 ⊂ E1 and
V2 = V1. In both cases, the partiality considered is 50%.
We report the node classification accuracy over three runs
with random initialization. We train all the models for 500
epochs.

In all the datasets the spectral representation reaches an accu-
racy comparable with at least one of the methods proposed
by (Yang et al., 2022a). In particular in the node-aware
setting, the spectral map always perform as the first or sec-
ond best method. The edge aware setting corresponde to a
non-isomorphic transofrmation of the graph. In this case,
as we will show in Section 5.2, the spectral representation
still holds a compact representation but at higher percent-
ages of partiality the correlation between the eigenspaces
of the graphs tends to be weaker. As the results show, this
can damage the performance of the spectral representation
even if not drastically. We believe this is can lead to further
investigation on the non-isomorphic mapping of graphs.

The spectral representation is also a faster method than
(Yang et al., 2022a). Since the eigenvector can be pre-
computed, at training time the only additional expense is
a simple matrix multiplication. Overall, the spectral repre-
sentation can reach a speedup of 200% compared to (Yang
et al., 2022a). In Appendix D we show the full table with
the computation time per epoch and speed ups.
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Table 2: Knowledge distillation: Results of node classification accuracy over multiple runs. We compare the spectra
representation (Ours) with the methods proposed by (Yang et al., 2022a) (GKD-G, GKD-R, GKD-S, PGKD). For Ours we
also report the percentages of eigenvectors used in the spectral map.

(a) Node-aware knowledge setting

Cora Citeseer Amazon-photo Amazon-computer Coauthor-cs Pubmed

ORACLE 87.74± 1.41 70.35± 1.30 93.00± 0.63 90.90± 0.56 92.89± 0.41 86.33± 0.25

TEACHER 85.52± 0.51 68.91± 1.62 91.93± 0.11 89.34± 0.42 92.25± 0.45 85.16± 0.56

STUDENT 82.87± 2.09 69.19± 2.27 92.30± 0.40 85.41± 2.30 85.67± 2.28 85.09± 0.16

GKD-G 88.08± 0.95 71.07± 0.36 92.02± 0.41 90.13± 0.19 92.75± 0.61 85.97± 0.15

GKD-R 88.13± 1.32 70.83± 1.89 92.44± 0.43 88.25± 0.79 92.13± 0.86 86.05± 0.42

GKD-S 87.64± 0.56 71.15± 0.88 92.44± 0.67 89.95± 0.50 92.26± 0.37 86.01± 0.27

PGKD 86.71± 0.82 68.95± 0.55 92.21± 0.67 89.80± 0.12 92.02± 0.14 86.36± 0.34

Ours (% eigs) 88.08± 1.11(12%) 71.15± 1.13(50%) 92.84± 0.28(25%) 90.94± 0.50(50%) 92.13± 0.37(50%) 86.42± 0.39(50%)

(b) Edge-aware knowledge setting

Cora Citeseer Amazon-photo Amazon-computer Coauthor-cs Pubmed
ORACLE 87.74± 1.41 70.35± 1.30 93.00± 0.63 90.90± 0.56 92.89± 0.41 86.33± 0.25

TEACHER 81.88± 1.49 67.11± 2.05 90.57± 1.04 87.47± 0.26 91.14± 0.54 83.19± 0.49

STUDENT 82.82± 0.31 70.47± 1.42 92.42± 0.54 77.86± 3.20 83.38± 1.48 84.52± 0.31

GKD-G 87.54± 0.23 71.51± 0.82 91.76± 0.60 89.53± 0.12 91.98± 0.07 86.09± 0.14

GKD-R 86.76± 1.48 71.11± 0.70 92.12 ± 0.36 88.29± 0.58 91.73± 0.35 86.06± 0.64

GKD-S 87.05± 1.20 71.31± 2.65 92.00± 0.53 88.49± 0.64 91.51± 0.47 86.07± 0.43

PGKD 86.21± 0.56 69.59± 0.68 92.42± 0.31 89.30± 0.61 91.65± 0.25 86.86± 0.48

Ours (% eigs) 86.26± 0.39(4%) 71.47± 0.62(4%) 92.14± 0.24(25%) 90.16± 0.46(50%) 91.80± 0.33(50%) 85.81± 0.10(50%)

M

N

G1

G2 G3 G4

+1
0
−1

Figure 3: A spectral map between a full and a partial surface
(left) compared to the spectral maps between a graph and
three different subgraphs (right).

5. Empirical results and analysis
So far we have seen how the spectral representation can be
easily plugged in into existing pipelines showing competi-
tive performances. In this section, we analyse the structure
of the spectral map under different kind of partialities to
give further insights on its benefits.

5.1. Map structure

In Section 4.1 we highlighted how the most direct conse-
quence of this preservation of eigenspaces is reflected in the
structure of the spectral map C. In 3D geometry processing,
a similar behavior was observed for the discrete Laplace-
Beltrami operator under partiality transformations (Rodolà
et al., 2017; Postolache et al., 2020); however, their theo-
retical analysis assumes the data to be Riemannian surfaces
with a smooth metric – an assumption that does not hold in
the case of general graphs. We refer to Appendix A.2 for
further details.

In Figure 3 we show several examples of matrix C for dif-
ferent subgraphs. On the left we show the functional map
matrix between a smooth surfaceM and a deformed partN :
the slanted-diagonal structure suggests that the eigenspaces
ofM are mostly preserved in N . On the right, we show
the spectral map matrices between a graph G1 and different
subgraphs: G2 is obtained by removing 40% of the nodes of
G1, while G3, G4 are obtained by removing 55% and 80%
of the edges from G2 respectively. The slanted-diagonal
structure can still be observed and gets dispersed only at
very high partiality. In the graphs, corresponding nodes have
the same color. The slanted-diagonal structure of the map
betweenM andN is explained by an application of Weyl’s
law to 2-dimensional Riemannian manifolds, see Rodolà
et al., 2017, Eq. 9 and Appendix A.2. However, there is no
theoretical counterpart to explain the map structure between
G1 and its subgraphs, due to the complete absence of metric
information about the underlying surface: the eigenfunc-
tions are computed purely from the graph connectivity. Yet,
the diagonal structure is preserved even under rather dense
removal of edges, suggesting deeper algebraic implications.

One might legitimately ask whether the presence of a struc-
ture in the maps of Figure 3 is due to the specific choice of
the data, where the subgraphs derive from a 3D mesh (al-
though the normalized graph Laplacian dismisses any edge
length information) and where the type of partiality resem-
bles a neat ‘cut’ (although we also perform random edge
removals). However, the same behavior is also observed
with abstract graphs, as we show with CORA (McCallum
et al., 2000) in Figure 5, and with the datasets PPI0 (Hamil-
ton et al., 2017b), Amazon Photo (McAuley et al., 2015)
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Figure 4: Robustness of the map to the simultaneous action of partiality and rewiring of the subgraph. We compare the
addition of gaussian noise (µ = 0;σ = 0.2) with the impact of increasing rewiring (from 3% to 30% of the total number of
edges) on the functional map C of size 50× 50. On the left, we plot three graphs with their functional map: no rewiring
(Subgraph), the addition of gaussian noise (Noise), 3% of edges rewired (3%), and 30% of edges rewired (30%). On the
right, we plot the variation of C at different percentages of rewiring (solid lines) and with the addition of noise (dashed
lines) for each graph.

CORA
class removal

CORA
random cut

Figure 5: Spectral maps between CORA and two different
subgraphs.

and Amazon Computer (McAuley et al., 2015) in Figure 7
of the Appendix.

5.2. Non-isomorphic subgraphs

In many practical settings, there are cases where the sub-
graph G2 is contained in the bigger graph G1 only up to
some topological alterations; for example, in the graph
learning literature, topological perturbations frequently oc-
cur due to noise in the data, or are explicitly obtained by
rewiring operations (Chamberlain et al., 2021) or adversarial
attacks (Jin et al., 2021) among others.

In Figure 1, we show the spectral map between Minnesota
and a subgraph after rewiring (iii). We still observe a corre-
spondence between the eigenvectors of the full graph and
those of the subgraph. The spectral map has a sparse pattern,
but it loosens up as the topological modifications increase.
For this to be true, we expect that small changes in graph
connectivity lead to small changes in the matrix coefficients.
See Appendix B.2 for the formal definition.

In Figure 4, we evaluate the changes of the spectral map
at increasing percentages of rewiring of a subgraph. We

consider six graphs and compute a subgraph from each one.
Then, we apply small incremental changes to the topology of
the subgraphs, with increments of 3% of the total number of
edges; the changes are performed by removing and adding
random edges, obtaining new subgraphs Gi. The plot on
the right shows how much the spectral map representation
is affected by the increasing topological changes compared
to adding Gaussian noise. In all the cases, the rewiring
produces less variation in the spectral map than in adding
Gaussian noise. In particular, the functional representation
is more robust on larger graphs, such as cat (10000 nodes)
or citeseer (2120 nodes), while on smaller graphs such as
QM9 (29 nodes) and Karate (34 nodes), removing or adding
an edge has a more significant impact. This observation
demonstrates the effectiveness of the spectral representation,
especially on larger graphs. In Appendix B.2, we show the
complete qualitative analysis; while in the Supplementary
Materials, we push this experiment to stronger rewiring.

All the remarks so far directly depend on graph connectivity,
and it is hard to find analogies for smooth surfaces. We
conjecture that local topological transformations of a graph,
while they can certainly induce strong transformations of
some of its Laplacian eigenspaces (similar to single-point
perturbations on planar manifolds, see (Filoche & May-
boroda, 2012)), are less likely to distort all the eigenspaces
at once. This way, the spectral map matrix tends to maintain
its global structure intact and exhibits local perturbations.

5.3. Signal Transfer

In Section 4.2 and 4.3, we leveraged Equation 2 to trans-
fer information between graphs. To better understand how
the spectral representation afflicts the transferred signal, in
Figure 6, we analyze the spectral map transfer performance
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Original graph Sub graph

1% 10% 75%

Percentage of eigenfunctions
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Figure 6: RMSE obtained by transferring positional encodings (PE) using the spectral map with an increasing amount of
eigenfunctions. On the left, we show a qualitative example of signal transfer on PPI0. The first row shows the full graph and
the partial graph, with the PE plotted on top. The bottom row shows the results of signal transfer with different percentage
of eigenfunctions. On the right, we plot the RMSE at increasing percentages of eigenfunctions.

while increasing the number of eigenfunctions used for the
map representation. We evaluate the fidelity of the trans-
ferred signal with the Root Mean Squared Error between the
transferred signal ĝ and the ground truth signal g (obtained
via the ground truth node-to-node correspondence):

RMSE =

√√√√ 1

n

n∑
i

(g(i)− ĝ(i))2 , (4)

where n is the number of nodes in the subgraph. We con-
sider pairs composed of the original graph and a series of
subgraphs extracted according to a semantic criterion, e.g.,
nodes belonging to the same class or nodes connected by
the same edge type. Motivated by the results from (Brüel-
Gabrielsson et al., 2022), we transfer the Random Walk
Positional Encoding (Dwivedi et al., 2022) computed on
the full graphs to the subgraphs. We normalize each dimen-
sion of the node features of the original graph to exhibit
zero mean and unitary standard deviation throughout all
the nodes and then transfer this signal through Equation
2. In Figure 6, we can see how the Root Mean Squared
Error between the spectral map and the ground truth transfer
decreases as the number of eigenfunctions increases. In
particular, the error is almost steady between 30% and 75%.
This demonstrates the convenience of using fewer eigen-
vectors. The qualitative examples on the left of Figure 6
portray the transferred signal on PPI0. The transfer reaches
a good approximation at 1% of the eigenfunctions, while
at 10% and 75% they are almost identical. This behaviour
demonstrates that using a compact representation with few
eigenvectors can approximate the signal well. In Appendix
A.3, we show more experiments with different number of
eigenfunctions.

6. Conclusions
The spectral representation of maps for encoding graph and
subgraph maps lends itself well to several applications, and
we anticipate that it will be a useful addition to the graph
learning toolset.

Further, while in this paper we showed extensive evidence
that the spectral map representation bears a special structure
depending on the type of partiality, currently we have not
taken full advantage of this structure. When the task at hand
requires seeking for the subgraph alignment, i.e. whenever
the map is unknown, it may be possible to design stronger
regularizers to induce sparsity in the matrix representation of
the map. This is quite different from the better known setting
of 3D surfaces, where this sparse structure is typically just
diagonal or slanted-diagonal.

In the light of the increasing interest of the graph learning
community toward spectral techniques, adopting a spectral
representation for maps between graphs is a natural next
step; it is simple to adopt, easy to manipulate, and memory-
efficient, and has the potential to become a fundamental
ingredient in spectral graph learning pipelines in the near
future.
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A. Interpretation of the spectral map matrix
A.1. Functional maps on surfaces

Consider two smooth manifoldsM and N , and let T : N →M be a point-to-point map between them. Given a scalar
function f :M→ R, the map T induces a functional mapping via the composition g = f ◦ T , which can be seen as a linear
map TF : f 7→ g from the space of functions onM to the space of functions on N . As a linear map, the functional TF
admits a matrix representation after choosing a basis for the two function spaces.

To this end, consider a discretization ofM and N , with vertices V1 and V2 respectively, and the corresponding discretized
version of their Laplace-Beltrami operators (LBOs) (the counterpart of the graph Laplacian on smooth manifolds). The
first k eigenfunctions of the two LBOs can be concatenated side by side as columns to form the matrices Φ ∈ R|V1|×k and
Ψ ∈ R|V2|×k. Further, assume the pointwise map T is available and encoded in a binary matrix S, such that S(y, x) = 1 if
y ∈ V2 corresponds to x ∈ V1, and 0 otherwise. By choosing Φ and Ψ as bases, the functional map TF can be encoded in a
small k × k matrix C via the change of basis formula:

C = Ψ†SΦ , (5)

where † is the Moore-Penrose pseudoinverse. The size of C does not depend on the number of points inM and N , but only
on the number k of basis functions. In other words, C represents the linear transformation that maps the coefficients of any
given function f :M→ R expressed in the eigenbasis Φ, to coefficients of a corresponding function g : N → R expressed
in the eigenbasis Ψ.

When the pointwise similarity S is unknown, one can directly compute the matrix C as the solution of a regularized
least-squares problem with k2 unknowns, given some input features on the two surfaces (e.g., landmark matches or local
descriptors). For further details we refer to (Ovsjanikov et al., 2012; 2017).

A.2. Comparison with smooth surfaces

In the case of smooth surfaces, it has been shown (Rodolà et al., 2017) that the sparsity pattern of matrix C can be well
approximated by a simple formula. Given a surfaceM and an isometric part N , the matrix C is approximately diagonal,
with diagonal angle α proportional to the ratio of surface areas:

α ∼ Area(N )

Area(M)
. (6)

As a a special case, full-to-full isometric shape matching yields a diagonal matrix C, since Area(N ) = Area(M). This
result comes directly from an application of Weyl’s asymptotic law for Laplacian eigenvalues of smooth manifolds (Weyl,
1911), which relates the eigenvalue growth to the surface area of the manifold via the relation:

λ` ∼
(2π)2

Area(M)2/d
`2/d , `→∞ (7)

where d is the dimension of the manifold (d = 2 for surfaces). We refer to Rodolà et al., 2017, Eq. 9 for additional details
pertaining surfaces.

However, Weyl’s law (Equation 7) does not hold for graphs, since there is not a well-defined notion of “area” of a graph. In
fact, when we work with graphs and subgraphs, we observe that matrix C does not necessarily follow a diagonal pattern.
More general sparse structures are observed in the coefficients of C, but an explanation rooted in differential geometry is not
readily available.

In Figure 7, we report additional examples with large abstract graphs undergoing partiality transformations, showing that
clear patterns appear rather consistently across different datasets.

Based on these observations, we believe there is an intriguing theoretical gap between what has been observed in the case
of smooth manifolds, and what we report for graphs in this paper. In the former case, a geometric explanation has been
proposed in the literature. In the latter case, empirical evidence yields similar results, yet it seems to be a purely algebraic
phenomenon that remains to be addressed.
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Figure 7: spectral maps computed over abstract graphs from 4 different datasets (CORA (McCallum et al., 2000),
PPI0 (Hamilton et al., 2017b), Amazon Photo (McAuley et al., 2015) and Amazon Computer (McAuley et al., 2015)),
showing a clear pattern in all cases. For each dataset, we compute the spectral map matrix C between the complete graph
and a subgraph; the subgraph is obtained according to a semantic criterion depending on the dataset, e.g., for Amazon Photo,
by considering the subgraph of nodes belonging to the same product category. For each spectral map matrix C, we also
show a zoom-in (framed in red). All the matrices are sparse, and have a clean structure that in some cases approximates a
slanted diagonal. The wide matrix on the bottom is computed on Amazon Photo (using a different subgraph than the one
used in the example above it), and shows that the sparse behavior is maintained throughout the entire spectrum.

A.3. Number of eigenvectors

Given two graphs G1 and G2 with m and n nodes respectively, the node-to-node map S has size n × m, thus scaling
quadratically with the number of nodes.

By contrast, matrix C as defined in Equation 1 has dimensions that only depend on the number of Laplacian eigenvectors
encoded in the matrices Φ1,Φ2. If one chooses the first k1 � m Laplacian eigenvectors for G1 and the first k2 � n
Laplacian eigenvectors for G2, the size of C is k2 × k1. Observe that C is rectangular in general, but can be made square by
choosing k1 = k2 if so desired.

The experiments in Figure 6 and 8 show that as the number of eigenvectors increases, the performance also increases.
The Mean Average Precision (MAP) is defined as 1

n

∑n
i=1

1
rai

where rai is the rank (position) of positive matching node
in the sequence of sorted candidates. In particular, Figure 8 demonstrates that, in most of the cases, a low percentage of
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Figure 8: MAP(%) of the correspondence on different datasets at increasing number of eigenvectors (expressed as
percentages, growing from 1% to 75%). The correspondences are obtained from ground-truth spectral maps.

eigenvectors (about 5%) suffices to retrieve a good node-to-node correspondence; while at 50% of the eigenvectors on all
graphs the error is above 90%. As a general guideline, in this paper we typically use k = 20 ∼ 50 for a graph with 1000
nodes, leading to an especially compact representation C.

A.4. Choice of Laplace operator
L = D − A L = I −D−1/2AD−1/2

Figure 9: Spectral maps computed with two different
Laplacians between the CORA graph and its subgraph.

A spectral map can be computed from the eigenbasis of any linear
operator. In this paper we use the symmetrically normalized
graph Laplacian L = I −D 1

2AD
1
2 . A valid alternative is the

standard Laplacian L = D−A, which shows similar behavior to
the normalized counterpart. At a practical level, we observed that
the Laplacian L suffers from more problems of high multiplicity
at lower frequencies, see Figure 9.

In the special case where the graph is constructed on top of a
point cloud sampled from a (possibly high-dimensional) mani-
foldM, it has been shown that the eigenvectors of the normal-
ized graph Laplacian converge to the eigenfunctions of the Laplace-Beltrami operator onM (Belkin & Niyogi, 2006).
However, as discussed in Appendix A.2, our case is more general. We consider generic abstract graphs without an explicit
underlying manifold, i.e. we do not construct our graphs from input point clouds. Further, in (Belkin & Niyogi, 2006) it
is assumed thatM is a compact infinitely differentiable Riemannian submanifold of Rd without boundary, meaning that
partiality transformations, which are the main focus of this paper, are not considered.

B. Dataset and implementation details
In this section we report additional details about the experimental setup used in the main manuscript.

B.1. Datasets

In Table 3 we sum up the main statistics across all the datasets and benchmarks used in our experiments. In addition to
number of nodes, number of edges, graph diameter and average node degree, in the table we also report the application
domain of each dataset, the task where they are used, the type and number of node-wise features (where used). Since
PPI and QM9 are collections of graphs, we used only a subset. In particular, from the PPI dataset we used the first and
fourteenth graphs (specified with 0 and 13 in the experiments). The Cat graph is derived from the corresponding mesh of the
SHREC’16 Partial Deformable Shapes benchmark (Cosmo et al., 2016a).
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(a) The plotted matrices represent the spectral map between the full and partial graphs from 0% to 30% of rewiring, showing the effect of
rewiring on the spectral map structure.
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(b) The plotted matrices encode the element-wise error of the spectral map after the topological perturbations. Error is encoded as color,
growing from white to red.

Figure 10: Robustness of the map to the simultaneous action of partiality and rewiring of the subgraph. The rewiring
operations are increasingly stronger, with increments of 3% of the total number of edges (starting from 3% and reaching
30%). The second column shows one representative example (per dataset) of such topological modifications, depicting the
added edges in green, and the removed edges in red. The plotted matrices represent the spectral map after the topological
perturbations, showing the effect of rewiring on the spectral map structure.
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Table 3: Summary of statistics about the datasets used in our experiments.

Dataset Nodes Edges Diameter Average
degree Domain Task Features Number

of features
QM9 (Klicpera et al., 2020) 29 47 6 3.24 Chemistry Graph regression - -
Karate (Zachary, 1977) 34 78 5 4.59 Social networks Node classification - -
PPI 0 (Hamilton et al., 2017b) 1546 17699 8 21.90 Chemistry Graph regression Gene attributes 50
Citeseer (Giles et al., 1998) 2120 3731 28 3.50 Citation networks Node classification Bag-of-Words 3703
Cora (McCallum et al., 2000) 2485 5069 19 4.08 Citation networks Node classification - -
Minnesota 2635 3298 98 2.5 Roadmap - - 1,433
PPI 13 (Hamilton et al., 2017b) 3480 56857 8 31.68 Chemistry Graph regression Gene attributes 50
Douban (Wu et al., 2016) 3906 8164 13 4.18 Social networks Network alignment - -
Amazon Photo (McAuley et al., 2015) 7487 119044 11 31.80 Co-purchase Node classification Bag-of-Words 745
Cat (Cosmo et al., 2016b) 10000 19940 86 5.99 Geometry processing Shape matching - -
FraudAmazon (Zhang et al., 2020) 11944 4417576 4 739.71 Product reviews Fraud detection Bag-of-Words 25
Amazon Computer (McAuley et al., 2015) 13381 245778 10 36.74 Co-purchase Node classification Bag-of-Words 767
Coauthor-cs () 18333 163,788 24 8.93 Citation networks Node classification Bag-of-Words 6,805
Pubmed () 19717 88,648 18 4.5 Citation networks Node classification Bag-of-Words 500

Table 4: Computation time per epoch in the task of Knowledge Distillation. For each methods we report the mean time per
epoch in milliseconds and the speed up with respect to Ours (5%). For the spectral map, we report the performance with
both 5% and 10% of eigenvectors.

Cora Citeseer Amazon-photo Amazon-computer Coauthor-cs Pubmed Coauthor-physics

ORACLE 2.47 (54%) 2.68 (54%) 3.75 (47%) 6.27 (40%) 5.22 (51%) 2.75 (50%) 10.84 (48%)

TEACHER 2.47 (54%) 2.68 (54%) 3.75 (47%) 6.27 (40%) 5.22 (51%) 2.75 (50%) 10.84 (48%)

STUDENT 2.81 (47%) 2.95 (49%) 3.18 (55%) 4.32 (59%) 5.24 (51%) 2.84 (48%) 9.24 (56%)

GKD-G 7.28 (−37%) 7.67 (−32%) 25.79 (−265%) 15.25 (−45%) 18.80 (−76%) 14.76 (−169%) 39.66 (−91%)

GKD-R 9.51 (−79%) 9.86 (−69%) 21.78 (−208%) 16.85 (−60%) 20.27 (−90%) 16.46 (−200%) 41.29 (−99%)

GKD-S 6.27 (−18%) 6.51 (−12%) 17.31 (−145%) 13.90 (−32%) 17.45 (−64%) 13.68 (−149%) 38.35 (−85%)

PGKD 7.90 (−48%) 8.19 (−40%) 17.53 (−148%) 18.44 (−75%) 20.36 (−91%) 15.56 (−183%) 45.02 (−117%)

Ours (5%) 5.32 (0%) 5.83 (0%) 7.07 (0%) 10.53 (0%) 10.66 (0%) 5.50 (0%) 20.77 (0%)

Ours (10%) 5.51 (−4%) 6.18 (−6%) 7.20 (−2%) 10.63 (−1%) 10.97 (−3%) 5.83 (−6%) 21.97 (−6%)

B.2. Robustness to rewiring

In this Section, we formally define the connectivity changes and spectral map robustness used in Section 5.2. Given two
graphs G = (V,E) and G′ = (V ′, E′), we measure the amount of change from G to G′ as the (minimum) number of edits
needed to transform E to E′, divided by |E|: (|E−E′|+|E′−E|)

|E| . In our experiments, we consider small changes in the graph
connectivity as a perturbation of 3% of the edges. The rewiring operation we applied to the graphs consists of the deletion or
addition of the same number of edges.

We define the difference between the spectral map C and C ′ as ‖C − C ′‖2F . Note that there is ambiguity in the sign of the
eigenfunctions of C ′; to factor it out from the error computation, we use the sign that minimizes the error.

In Figure 10 we show the spectral maps generated from the experiment in Figure 4. Figure 10a shows the spectral
map between the full and partial graphs from 0% to 30% of rewiring; Figure 10b shows the variation in the functional
representation between the non-rewired case and the different percentages of rewiring.

C. Hierarchical Graph Embedding: additional results
In Figure 11, we report the accuracy performance for different percentages of eigenvectors in the experiment of Section 4.2.
The performance of the spectral map rapidly increases at low percentages demonstrating the need for a few eigenvectors to
obtain a good embedding lifting. When the percentages are higher than 50% the accuracy decreases reaching the values of
the node-to-node map at 100%. This phenomenon demonstrates that the spectral map can approximate the node-to-node
map at 100% eigenvectors, but it is not the most convenient representation for the Hierarchical Embedding on graphs.

D. Geometric Knowledge Distillation: additional results
In Table 4 we show the mean epoch time registered during training. For each method and datset we report both the time in
millisecond and the speed up compared to Ours (5%). The spectral representation is able to reach a speed up of 200% in
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(a) Cora
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(b) Citeseer
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Figure 11: Node classification accuracy on the task of Hierarchical Graph Embedding at different percentages of eigenvectors

some cases, demonstrating its convenience in terms of computation efficiency.


