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ABSTRACT
The rise in loosely-structured data available through text, images,
and other modalities has called for new ways of querying them.
Multimedia Information Retrieval has filled this gap and has wit-
nessed exciting progress in recent years. Tasks such as search and
retrieval of extensive multimedia archives have undergone massive
performance improvements, driven to a large extent by recent de-
velopments in multimodal deep learning. However, methods in this
field remain limited in the kinds of queries they support and, in par-
ticular, their inability to answer database-like queries. For this rea-
son, inspired by recent work on neural databases, we propose a new
framework, which we name Multimodal Neural Databases (MM-
NDBs). MMNDBs can answer complex database-like queries that
involve reasoning over different input modalities, such as text and
images, at scale. In this paper, we present the first architecture able
to fulfill this set of requirements and test it with several baselines,
showing the limitations of currently available models. The results
show the potential of these new techniques to process unstructured
data coming from different modalities, paving the way for future re-
search in the area. Code to replicate the experiments will be released
at https://github.com/GiovanniTRA/MultimodalNeuralDatabases
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1 INTRODUCTION
The amount and variety of data available have increased dramati-
cally in recent years, and as more devices, such as smart glasses,
become widespread, this trend is likely to accelerate. While cur-
rent devices generate mostly text and image data, smart glasses
will likely increase the amount of audio and video data individuals
create. With the emergence of generative AI, we will likely see
an explosion of valuable generated data. Multimedia Information
Retrieval (MMIR) has always attracted the attention of scientists
and practitioners in Information Retrieval. MMIR aims to address
the challenges of processing queries on multimedia collections.
Due to the enormous increase of data availability, MMIR has also
seen a surge in its interest. The field has explored topics such as
retrieval from large image archives, query by image, and retrieval
based on face or fingerprint [5]. However, this paper brings for-
ward a novel and transformative idea: given the huge impact that
the field of AI has having in all of the areas of technology, we argue
that the MMIR field needs to explore systems that can handle more
expressive database-like queries called multi-modal neural databases
(MMNDBs).

We illustrate the potential of MMNDBs with an example. Con-
sider the following query over an image archive: how many images
contain musical instruments? Assume that the images in the collec-
tion are labeled with the objects that are identified in them (e.g.,
trumpet, avocado, person). Hence, an MMIR system is likely to be
able to return images with trumpets, or other musical instruments.
However, finding which objects are wind instruments (or a more
detailed category) requires an additional reasoning step of a join
with a database of instruments. Moreover, counting the number
of images that satisfy our condition requires reasoning about the
size of the answer set, an operation routinely done by database sys-
tems but not supported by MMIR systems. Examples can be more
complicated, such as finding the most common musical instrument
appearing in the photos or considering only photos taken in cities
that hosted the Olympic games. As seen from the examples above,
one of the critical needs of MMNDBs is the ability to reason about
sets.

In this perspective paper, we propose to study, design, and build
MMNDBs by combining the capabilities of largemultimodal models,
multi-media information retrieval, and database query processing,
as shown in Figure 1. We have been inspired by the work on neu-
ral databases [26, 28, 29] that have garnered interest in the NLP,
database, and IR communities. However, we differentiate from that
work as we position ourselves as an evolution of the field of MMIR

ar
X

iv
:2

30
5.

01
44

7v
1 

 [
cs

.M
M

] 
 2

 M
ay

 2
02

3

https://orcid.org/0000-0002-5515-634X
https://orcid.org/0000-0001-8483-2725
https://orcid.org/0000-0003-0091-7241
https://orcid.org/0000-0002-8717-7356
https://orcid.org/0000-0001-7669-9055
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Trappolini, et al.

by means of modern and, more recently proposed, multimodal AI
technologies.

We develop a first principled prototype to show the proposed
task’s feasibility. We will later stress that this is only one of the
possible architectures to solve MMNDBs and that future research
will unveil new strategies. At a high level, we build our prototype
on the retriever-reasoner-aggregator model. Given a query, the
retriever returns a small subset of documents from the database that
is relevant to the query. However, typically even that subset is too
big to be provided as input to a single reader, which is essentially a
transformer. Hence, the system runs multiple copies of the reasoner
in parallel, each producing a partial result for the query. Finally,
the aggregator component of the MMNDB will create the query
result from the intermediate ones. For example, if the query counts
the number of images that contain people, the intermediate results
would be 1 or 0, depending on whether the image contains a person.
The aggregator will add up the 1s.

MMNDB systems will be designed to handle a wide range of
multimedia data, including images, videos, audio, and text. The
system will be able to process queries in natural language, allowing
users to express their queries intuitively and easily. The system will
also be able to extract features from multimedia data and use them
to improve the performance of retrieval tasks.

This paper describes a first step towards the realization of MM-
NDBs flexible enough to scaffold futuremodels.We consider queries
over collections of images and validate several aspects of our pro-
posed architecture, as seen in Figure 2. We perform a rich set of
experiments that show the feasibility and potential of the proposed
task across a subset of possible query types. Finally, we discuss pos-
sible future research directions stemming from the anlysis brought
forward in this paper and the introduction of Multimodal Neural
Databases.

2 MULTIMODAL NEURAL DATABASES
We refer to a corpus of documents coming from different modal-
ities as a multimodal database. The definition of documents we
provide here is intentionally very loose. In general, it could be any
self-contained piece of data. Multimodal databases could include
wildly different sources. For instance, it could contain information
in natural language form, images, sounds, geo-tagging informa-
tion, a timestamp, and many others. Unlike a traditional database,
a multimodal database is unstructured in the sense that it does not
need to have a schema, or even less, it does not need to have any
particular ordering but can be just the unordered and unstructured
set of these documents.

Multimodal databases arise in several contexts. One existing con-
text today is that of online social media, where users post content
of different kinds (text, images, memes, videos, audio). Here, each
post is a document in the multimedia database, with the added
peculiarity that the database would have to keep track of the graph
of friendships between users. Another context that will arise in
the near future when smart glasses are prevalent is the record of
a user’s day. Just by doing simple activities, like getting a coffee
in a bar, the glasses will capture (adhering to whatever privacy
conventions get adopted) sensory data, pictures (videos) of who is

at the bar and what they are eating, audio of the background track
playing, and photos of receipts for one’s purchases.

Ideally, we would like to be able to query these rich, large, and
unstructured collections of data the same way we query a database.
Going further, unlike a standard database, we would like to use
natural language to perform queries instead of a rigid language like
SQL. Specifically, given a multimodal database 𝐷 and a query 𝑞, we
would like to be able to perform the following types of query: (a)
Set queries; set queries are extractive queries that return a list of
spans, such as entities, from the facts. (b) Boolean queries; that
return either True or False as an answer. (c) Join queries; which
require the combination of two or more documents to produce each
answer.

We note that unlike traditional databases (or even neural databases),
Multimodal databases can produce answers consisting of heteroge-
neousmodalities. For instance, a set query can produce answers that
include images, audio, and natural language (and their combination)
seamlessly.

Designing a Multimodal Neural Database presents several sub-
stantial challenges.

First, it is crucial that the system is able to reason on the modali-
ties given in input. For instance, if I were to look for images of cats
and dogs fighting, I need to recognize both the presence of these
animals and that the interactions between the two is indeed that of
fighting (a poster of Mike Tyson boxing in the background is not
sufficient). Similarly, if the query mentions someone whispering
or yelling, the system must understand such subtleties in an audio
frame. Recently, deep learning techniques, particularly large deep
learning models, have shown excellent reasoning capabilities [10].
The tasks of Visual Question Answering and multi-hop question
answering have reached near human results [30] for natural lan-
guage processing, with promising candidates in the multimodal
setting as well.

However, these models are usually extremely large, with billions
of parameters, leading to the next challenge, namely scale. Given a
large collection of documents, it is infeasible to run such models
on every query-document pair, or even on every document for that
matter.

Open domain question answering systems (ODQA), developed
for answering queries from natural language text, provide a method-
ology for scaling to larger document collections. ODQA answers a
query by first retrieving relevant documents from the document
collection and feeding them as context to a transformer along with
the query. However, transformers can only accept contexts of lim-
ited sizes (currently, 512 to 1024 tokens). Even though extending
these sizes is a very active area of research, it will always likely
be smaller than the size necessary to process the kinds of queries
we are striving for. The number of documents that need to be pro-
cessed for answering database queries can be arbitrarily big, as can
the intermediate result sets. In contrast, ODQA systems usually
consider queries whose answers are small and can be obtained by
feeding just a few documents to the transformer. Furthermore, a
multimodal database is an unordered set of documents, so we cannot
exploit any locality heuristic to retrieve the relevant documents.

Last but definitely not least, there is a challenge of bridging be-
tween the different modalities in a multimodal database. To answer
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Figure 1: A possible use case for MMNDBs. Imagine walking around the city with smart glasses and collecting information
in a multimodal database. In the evening, you could be interested in knowing which are good places to eat that satisfy some
criteria. MMNDBs could help make that decision by answering a database-like query posed in natural language (or voice!),
combining multiple information sources and modalities.

Figure 2: Schema for our proposed MMNDB prototype. Given a query, documents are first filtered by a retriever module. A
reasoner produces intermediate answers that are them processed by an aggregator to produce the final answer.

queries over multimodal data, one has to process, reason, and com-
bine information coming not only from different documents but also
from documents expressed in different modalities. The literature
in natural language processing and computer vision has recently

paved the way and achieved outstanding results in the field. Multi-
modal models have followed, showing excellent results in the task
of text-to-image, image-to-text, and text-to-music. However, most
multimodal models available today tackle either the text-visual
or the text-audio tasks. Combining multiple modalities, while not
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unexplored [2], still needs additional research efforts to reach suit-
able levels to address the task at hand. In particular, to suitably
address the task of MMNDB, we would need a “true" multimodal
model, which can reason on any possible modality given as input.
For further discussion on this and other current limitations/future
research directions, we refer to Section 5.

3 A FIRST PROTOTYPE FOR MMNDB
To demonstrate the feasibility MMNDBs, this section describes a
first prototype of such a system, for a restricted case. We consider
databases in which all the documents are images, and queries, which
are posed in natural language, can express COUNT, MAX, and IN.
However, as we explain below, the architecture for our preliminary
system can apply to broader settings as well. We hope that this
architecture forms the basis for other approaches to MMNDBs.

Our system takes an input query 𝑞 over a database 𝐷 . It includes
three components. The first component is the retriever, which se-
lects a subset of the documents in 𝐷 that are relevant to answer
the query. The second component is the reasoner, which processes,
possibly in parallel, subsets of the retrieved documents. The rea-
soner provides a partial answer to the query. The third component
is an aggregation operator that synthesizes the answers provided
by the reasoner to compute the final answer to the query.

The strength of our architecture is that it enables us to exploit
recent advances in multimodal neural models when implementing
the retriever and the reasoner. Specifically, these models are able
to map multiple modalities into the same embedding space, and
therefore reason about the contents of images and text together.
For example, these models can identify objects in images and create
textual captions that describe the main aspects of of the image.

Before we explain each of the components, we give an end-to-
end overview of how a query is processed in our system. Consider
the query “How many people are playing the guitar in a blue t-
shirt on a beach". The reasoner considers a single image in 𝐷 and
uses the latest neural methods to determine whether the image
contains a person playing guitar on the beach. However, applying
such powerful reasoning on each of the documents in𝐷 is infeasible,
so we use a retriever to filter to only a small subset of the images in
𝐷 , 𝑃 (𝐷,𝑞). Multiple instances of the reasoner then are applied in
parallel to the retrieved images in 𝑃 (𝐷,𝑞) to determine which image
satisfies the query. In our example, if an image satisfies the query,
the reasoner returns 1 and otherwise 0. The aggregator then counts
the number of 1’s to return the final answer. We now describe each
of the components.
Retriever. The goal of the retriever is to return a subset 𝑃 (𝐷,𝑞)
of documents from 𝐷 that are relevant to the query 𝑞. The main
requirement from the retriever is that it be scalable. While the
reasoning we expect from the retriever is not at the same gran-
ularity as the reasoner, it should weed out the vast majority of
irrelevant images. To retrieve documents that are relevant to the
query, we encode both the query and the documents in the same
latent embedding space. However, as noted earlier, it is important
that the embedding of a document not be dependent on the query 𝑞,
otherwise we would have to compute a new embedding for every

document in 𝐷 for any given query. Hence, as we describe in Sec-
tion 4.1, we consider several methods for embedding the documents
in 𝐷 in a query independent way.
Reasoner. An instance of the reasoner 𝑃 (𝐷,𝑞) takes one of the
documents in 𝐷 as input and returns an intermediate answer to
our query 𝐴𝑝 . In the example above, the reasoner returns either 1
or 0 depending on whether the image satisfies the conditions in
the query. However, the intermediate result may be different. For
a query such as "What is the maximum number of people in the
images" the reasoner would return, for every image, the number
of people in that image. As another example, for the query "what
is the most common musical instrument seen in the database", the
output of the reasoner would be the list and number of occurrences
of each of the instruments it identified in the image.

The crucial role of the reasoner is, precisely, to reason about the
relationship between the image and the query. In our example, the
reasoner needs to determine whether there is a person wearing a
blue outfit, that the same person is the one playing the guitar, and
that they are physically located on a beach. The reasoner leverages
the recent advances in neural models that are able to perform such
reasoning by embedding the image and text in the same latent space
and generating textual captions of images. It is worth noticing,
however, that these models compute a dynamic embedding of the
query and of the image, that depends on both, i.e., 𝐹 (𝐼 |𝑇 ) ≠ 𝐹 (𝐼 )
and vice versa, where 𝐼 is the image, and 𝑇 is natural language
(could be any two modalities). This has profound computational
implications. In fact, to be able to answer the query, one would
need to process any possible 𝐷,𝑞 pair. Furthermore, since the query
is known only at inference time, it is not possible to precompute
the embeddings. It is then clearly unfeasible to run the reasoner
on the entire database. For this reason, we introduce an additional
module in our pipeline, namely the retriever.
Aggregator. The Aggregator takes as input the query and the set
of intermediate outputs from all the instances of the reasoners and
produces the answer to the query. Conceptually, this component
of the system is the simplest because the intermediate results need
to be aggregated depending on the semantics of the query. In our
example, the aggregator would count the number of images for
which 1 was returned. For the query counting the total number of
people, the aggregator would sum the intermediate results returned
from the reasoners.

4 EXPERIMENTS
This section describes the experiments we performed to validate the
promise of our prototype. We begin by describing the experimental
settings.

4.1 Experimental setup
In this section, we outline the experimental setup utilized to verify
the validity of our approach.

Dataset. Our experiments use the MS-COCO dataset (Common
Object in Context) [18], which is the single most popular benchmark
dataset in computer vision. We use the latest version made available
by the authors. The COCO dataset contains approximately 123K
labeled images. Each image is associated with 5 captions and is
annotated with the objects that are identified in it. The objects
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Table 1: Comparison of different Retriever models under the “Mixed" retrieval strategy. While CLIP’s versions featuring
resnets as a backbone have higher F1 and precision scores, ViT-based models achieve higher recall. We opt for the latter,
as it allows the Reasoner module to receive as much relevant information as possible, ultimately reducing the final pipeline
error.

Model 𝜇F1 𝜇Recall 𝜇Precision F1 Recall Precision

RN50 0.315 ± 0.002 0.819 ± 0.003 0.195 ± 0.002 0.320 ± 0.018 0.731 ± 0.035 0.302 ± 0.026
RN50x4 0.424 ± 0.002 0.794 ± 0.003 0.290 ± 0.002 0.447 ± 0.022 0.717 ± 0.031 0.419 ± 0.027
RN50x16 0.440 ± 0.002 0.791 ± 0.003 0.305 ± 0.002 0.478 ± 0.023 0.710 ± 0.029 0.457 ± 0.028
RN50x64 0.331 ± 0.002 0.837 ± 0.003 0.206 ± 0.002 0.384 ± 0.019 0.759 ± 0.034 0.343 ± 0.025
RN101 0.344 ± 0.002 0.873 ± 0.003 0.214 ± 0.002 0.388 ± 0.021 0.809 ± 0.028 0.317 ± 0.024
ViT-B/32 0.378 ± 0.002 0.876 ± 0.003 0.241 ± 0.002 0.395 ± 0.018 0.813 ± 0.022 0.298 ± 0.019
ViT-L/14 0.324 ± 0.002 0.931 ± 0.002 0.196 ± 0.001 0.329 ± 0.015 0.894 ± 0.018 0.219 ± 0.013
ViT-L/14@336px 0.337 ± 0.002 0.932 ± 0.002 0.205 ± 0.002 0.347 ± 0.016 0.905 ± 0.015 0.228 ± 0.014

are drawn from a collection of 1.5M object instances across 80
object categories. The dataset is divided into train and eval subsets,
containing 118K and 5K images, respectively. We use the train set
to train/fine-tune our methods while we report our results on the
eval set.

Queries. We use the MS-COCO dataset to build our queries. For
the COUNT query type, we may ask a query of the type “How
many {object} are in the database?", where object can be any of the
object category contained in the COCO dataset. Similarly, for the
MAX query type, we may be interested in the image of the dataset
with most frequent annotation of a particular kind. Finally, for the
In query, we are interested in images whose annotations satisfy
certain conditions.

Models. We now describe the neural models we used throughout
our experiment.

For the Reasoner, we employ OFA [32]. OFA is a deep learning
model trained on a wide variety of multimodal (text and image)
tasks, ranging from image captioning to image generation, showing
great results on unseen tasks as well. OFA is open-source (code and
weights) and is currently one of the best-performing multimodal
models. We test four different versions of OFA, namely medium,
base, large, and huge, with the largest featuring close to 1B pa-
rameters. OFA is a transformer-based model that builds a joint
representation of the input, namely text and visual, that is used to
generate a textual response. We stress again the fact that, given ade-
quate computational resources, this module of the pipeline is highly
parallelizable, hence capable of producing intermediate answers in
the span of a few seconds.

For the Retriever, we employed the CLIP model [22]. These mod-
els are trained in an unsupervised, contrastive manner by matching
captions and images. They take either text or images and align
them in a shared latent space that can be used for later inferences
and to measure their distance, with similar image-caption pairs be-
ing close together. We test on 8 different versions of CLIP, namely
RN50, RN101, RN50x4, RN50x16, RN50x64, ViT-B/32, ViT-L/14, ViT-
L/14@366px. CLIP’s salient feature is that the created embeddings
are static, meaning they do not depend on the query. This allows us

to pre-compute the embeddings for all images beforehand, mean-
ing that only the embedding for the query has to be computed at
inference time. Once the embeddings are computed, a strategy is
needed to select which documents are considered relevant (and
passed to the reasoner) and which ones are not. To do this, we craft
three strategies:
(i) TopK : in this case, we compute the dot product between the
embeddings of the documents and the query, we sort them, and we
select the TopK documents.
(ii) Threshold: we compute the cosine similarities between the em-
beddings of the text and the images, andwe return all the documents
for which the cosine similarity is greater than a certain threshold 𝜏
that depends on the particular CLIP model we are using, lying in a
range between 0.15 and 0.4.
(iii)Neural Selector : here, we train a small neural network that, given
the 𝑞 and 𝐷 embeddings, returns a binary outcome that indicates
whether the document is relevant for the query or not and whether
it should be returned.
The actual number of parameters depends on the CLIP version
employed, but it is always in the order of thousands. It is worth
noticing that, while it is still much more scalable with respect to
the large 1B parameters models the reasoner employs, this strategy
requires a “dynamic" processing; namely, the decision on which
documents to select relies on a neural model evaluating all q, D
pairs.

In a practical system, it is possible to circumvent some of the
issues above by borrowing techniques from the literature on online
aggregation literature [12]. In practice, we can sort the embedding
of the images according to the dot product they have with the query.
We then process them in batches of predetermined sizes𝑤 . We stop
once a specific tolerance criterion is met, namely when no more
than 𝑐 documents are predicted as relevant by the model.

This leads us to our fourth strategy, which we call Mixed. As the
name suggests, we mix two of the strategies already introduced,
Neural Selector and TopK. Specifically, we take the set union of the
TopK (With a small K) and Neural Selector documents to retrieve
and to be passed onto the Reasoner.
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Table 2: Results performance on the query type count. The PerfectIR setting acts as an ideal upper bound, showing the full po-
tential of theMMNDB framework. The Full Pipeline (Full), on the other hand, shows excellent accuracy and Δ error but a total
error that, while being good, is not at the level of PerfectIR.We empirically show that this is not caused by noise introduced by
the retriever module, as indicated by the excellent results achieved in the NoisyIR setting. Instead, this is caused by damaging
documents picked up by the retriever that trick the reasoner resulting in a large False Positives error and, ultimately, a large
total error.

Total Error ↓ Δ Error ↓ Accuracy ↑

Stock Error Error TP Error FP Error FN Δ Error Δ Error TP Δ Error FP Accuracy Accuracy TP Accuracy FP

Perfect IR 0.46 ± 0.07 0.46 ± 0.07 N/A N/A 4.64 ± 1.94 4.64 ± 1.91 N/A 0.60 ± 0.02 0.60 ± 0.02 N/A
Noisy IR 0.77 ± 0.16 0.46 ± 0.07 0.31 ± 0.15 N/A 2.66 ± 1.04 4.64 ± 1.91 0.31 ± 0.02 0.81 ± 0.01 0.60 ± 0.02 0.92 ± 0.01
Dmg. IR 1.24 ± 0.32 0.46 ± 0.07 0.78 ± 0.32 N/A 4.22 ± 1.41 4.64 ± 1.91 2.31 ± 1.15 0.70 ± 0.02 0.60 ± 0.02 0.76 ± 0.02
Full 1.27 ± 0.17 0.42 ± 0.07 0.76 ± 0.13 0.09 ± 0.02 3.33 ± 1.16 4.83 ± 2.03 1.96 ± 0.80 0.73 ± 0.02 0.61 ± 0.02 0.75 ± 0.02

FTmodel

Perfect IR 0.14 ± 0.01 0.14 ± 0.01 N/A N/A 1.46 ± 0.10 1.46 ± 0.10 N/A 0.67 ± 0.02 0.67 ± 0.02 N/A
Noisy IR 0.22 ± 0.01 0.14 ± 0.01 0.08 ± 0.01 N/A 0.90 ± 0.06 1.46 ± 0.10 0.43 ± 0.05 0.86 ± 0.01 0.67 ± 0.02 0.93 ± 0.01
Dmg. IR 0.54 ± 0.05 0.14 ± 0.01 0.40 ± 0.05 N/A 1.25 ± 0.08 1.46 ± 0.10 1.04 ± 0.09 0.73 ± 0.01 0.67 ± 0.02 0.73 ± 0.02
Full 0.99 ± 0.06 0.11 ± 0.01 0.79 ± 0.06 0.09 ± 0.02 1.10 ± 0.07 1.42 ± 0.10 0.99 ± 0.07 0.72 ± 0.01 0.69 ± 0.02 0.72 ± 0.02

4.2 Results
In this section, we present the experimental evidence to support
the ideas presented in this paper. First, we will show results that
test the performance of single architecture components. Following
that, we proceed to evaluate the entirety of our pipeline. Results
for all metrics are reported together with their standard error.

We start by evaluating our retriever strategy. We argue that, for
our pipeline, a good retriever should have a high level of recall since
every relevant document that is failed to be retrieved will produce
an error that will propagate to the subsequent components and onto
the final response. For this reason, we explicitly express a preference
for models and strategies obtaining a high recall. We tested each of
the 8 CLIP model versions on each of the 4 crafted strategies. For the
sake of space efficiency, we only show results for the various models
in the chosen final setting - mixed strategy - and the comparison
between different strategies using the best model - ViT-L/14@366px.
In Table 1, you can see the performance of the various models in
the Mixed Strategy setting. The first thing we can notice is that
while there is a shift in scale between 𝜇 and macro metrics, at
least for precision and recall, the ranking between different models
does not really change. Furthermore, While ViT-L/14@366px is the
best model neither with respect to F1 nor precision, it is the best
model when considering a recall. In fact, it consistently beat other
models in that regard, with the exception of its twin ViT-L/14, with
which the difference in terms of performance is minimal. Since the
difference in the number of parameters and general complexity is
almost unnoticeable, too, we saw no reason not to proceed with the
former. In Table 3, we report results for the 4 retrieving strategies
we tested. Once again, while Threshold offers the best precision,
the Neural Selector, particularly the Mixed Strategy, offers the best
overall results with comparable F1 and much higher Recall. In Table
4, we show the difference in performance between the various OFA
version we tested. We only show results for the COUNT query type
for the sake of not being repetitive since the difference between
these models transfers across tasks. In this case, unlike the retriever,
we see significant differences in results between the model versions

tested. Larger models clearly outperform smaller ones by a wide
margin. Moreover, OFA-huge outperforms OFA-large in terms of
total error and Δ error, while the latter achieves higher accuracy.
We choose OFA-large for two reasons: (i) we favor accuracy over the
other two metrics, and (ii) it has half the parameters with respect
to the huge version (0.5B vs. 1B). We also report on a finetuned
version of OFA-large (OFA-large FT), obtained by finetuning OFA-
large on the train set for 10 epochs with a learning rate of 5𝑒 − 5
with the same task. Finetuning the OFA model significantly boosts
its performance on the MMNDB task.

The metrics tracked, though spun off, are the same as in the
test whose results are reported in Table 2. Here, we test both the
reasoner capabilities and the full pipeline. We perform our testing
under 4 different scenarios, considering both the case in which we
have a stock model or a finetuned one, reporting on 10 different
metrics. We use the PerfectIR setting as a baseline. In this setting,
the set of documents retrieved 𝐷𝑟 is the set of documents that are
actually relevant, taken directly from the ground truth. This, of
course, is an ideal setting in which we assume a perfect retriever
and acts as a sort of upper bound for our method. Full pipeline
instead refers to our actual setting, in which our mixed strategy
retriever passes the set of retrieved documents. The metrics we
collect are of two kinds: one, with the word total as antecedent,
refers to the whole pipeline; the others, without the word total in
them, are meant as a test on the intermediate answers𝐴𝑝 produced
by the reasoner. In particular, By accuracy, we mean the percentage
of intermediate answers 𝐴𝑝𝑖 that are exactly equal to their ground
truth value. This is then averaged over all queries. We then further
divide this computation into two disjoint sets, namely, accuracy
for true positives (TP), documents in 𝐷𝑟 that are actually relevant,
and accuracy on false positives (FP), documents in 𝐷𝑟 that should
not have been retrieved. Please note that in the case of PerfectIR,
the set of FP documents is empty by definition. Since the task at
hand is that of the query type COUNT, we are also interested in
knowing of close an intermediate answer is to the ground truth
value. We track this with the metric Δ error. Here, similarly to the
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Table 3: Comparison among different retrieval strategies. The Threshold strategy achieves higher F1 and precision scores,
while the “Mixed" strategy has a higher recall. Once again, we opt for the strategy that achieves higher recall, namely Mixed,
as it allows the Reasoner module to receive as much relevant information as possible, ultimately reducing the final pipeline
error.

Selection Strategy 𝜇F1 𝜇Recall 𝜇Precision F1 Recall Precision

Top-K 0.211 ± 0.001 0.683 ± 0.004 0.125 ± 0.001 0.201 ± 0.009 0.852 ± 0.018 0.125 ± 0.009
Threshold 0.351 ± 0.003 0.226 ± 0.003 0.791 ± 0.006 0.445 ± 0.029 0.377 ± 0.030 0.776 ± 0.022
Neural 0.337 ± 0.002 0.932 ± 0.002 0.205 ± 0.002 0.343 ± 0.016 0.898 ± 0.018 0.235 ± 0.016
Mixed 0.337 ± 0.002 0.932 ± 0.002 0.205 ± 0.002 0.347 ± 0.016 0.905 ± 0.015 0.228 ± 0.014

Table 4: We test different neural models to be used as the
building block for the reasoner on the PerfectIR setting.
Smaller models clearly fail to compete with their larger
counterparts. OFA-huge achieves a smaller total and Δ er-
ror, while OFA-large has higher accuracy. We choose the lat-
ter as we favor accuracy over the other metrics and because
it has half the amount of parameters. We also report on a
finetuned version that significantly improves over the stock
versions.

Model Total Error ↓ Δ Error ↓ Accuracy ↑
OFA-base 0.831 ± 0.024 2.876 ± 0.217 0.094 ± 0.014
OFA-medium 0.871 ± 0.013 2.869 ± 0.180 0.074 ± 0.005
OFA-large 0.460 ± 0.073 4.645 ± 1.944 0.597 ± 0.022
OFA-huge 0.392 ± 0.025 2.363 ± 0.179 0.533 ± 0.023
OFA-large FT 0.138 ± 0.011 1.455 ± 0.100 0.668 ± 0.018

accuracy metric, we register the mean absolute deviation between
the intermediate answer 𝐴𝑝𝑖 and the ground truth, averaged over
all queries. Once again, we spun this off into its two components,
namely TP and FP.

Under these two metrics, we can see that the Full Pipeline re-
sults are competitive, if not better, with the PerfectIR version. Upon
further inspection, we can also deduct the cause. In fact, in Full
Pipeline, false positive documents are added to the computations.
Many of these documents are actually easier to deal with since they
do not contain the object of interest and can produce an intermedi-
ate answer of 0, raising both the accuracy and the Δ error of the
Full Pipeline version. In our experimenting, we also noticed that the
stock model was struggling to produce useful intermediate results
in some instances. For instance, the model would produce indecisive
answers like “many" and “few". Using some prompt engineering,
explicitly asking the model to “Answer with a number" alleviated
the problem but did not totally eradicate it. For this reason, as men-
tioned earlier, we produced a finetuned version of the reasoner,
which improves the accuracy score and dramatically reduces the Δ
error.

Finally, we report results on the total error metric. Under this
metric, we consider the final outcome of the pipeline 𝑜 , and we
compute its absolute deviation from the ground truth, averaged over
all queries, and normalized by cardinality. The PerfectIR version
achieves excellent results for this task, fully demonstrating the
feasibility of the task we propose in this paper. Full Pipeline, while

Table 5: Results for the query type MAX. It can be imme-
diately noticed how much the finetuning process improves
the performance of the MAX query type. In particular, we
notice that finetuned models are less prone to produce in-
decisive intermediate answers such as “many" and “a lot",
which are highly relevant to this query. We also notice how
close the Full Pipeline setting is to PerfectIR compared to
other queries. We argue this is due to the reduced impact
of damaging documents, i.e., it is unlikely that a damaging
document will be a likely candidate for MAX.

Stock Total Error ↓ Δ Error ↓ Accuracy ↑
Perfect IR 2.845 ± 1.759 29.263 ± 17.598 0.188 ± 0.044
Noisy IR 4.576 ± 2.486 41.438 ± 21.343 0.200 ± 0.045
Dmg. IR 4.258 ± 2.035 53.325 ± 23.933 0.188 ± 0.044
Full 4.280 ± 2.014 53.063 ± 24.027 0.213 ± 0.046

FTmodel

Perfect IR 0.229 ± 0.035 1.813 ± 0.271 0.575 ± 0.056
Noisy IR 0.229 ± 0.035 1.800 ± 0.273 0.550 ± 0.055
Dmg. IR 0.303 ± 0.060 2.100 ± 0.320 0.525 ± 0.056
Full 0.317 ± 0.056 2.263 ± 0.342 0.563 ± 0.055

achieving good scores, lags behind the PerfectIR setting. To further
investigate this difference in performance, we divide the total error
into its components. Once again, TP refers to documents correctly
retrieved, FP to documents wrongly retrieved, and false negatives
(FN) to documents that should have been retrieved but have not
(These last two components are null in the case of PerfectIR by
definition). We notice how the total error TP is actually comparable
between the two versions, slightly lower in the case of Full Pipeline
since a few of the more challenging documents are not retrieved.
Upon further inspection, we notice that the total error FN is almost
negligible, meaning that the gap in total error is not caused by
documents not being retrieved. From the experimental evidence, it
is clear that this gap is actually caused by false positives, documents
that should not have been retrieved, but they were, nonetheless.

To further investigate this phenomenon, we devise an additional
setting called NoisyIR. In this setting, we assume 𝐷𝑟 is composed,
as in PerfectIR, of the set of relevant documents to which we add,
however, some non-relevant documents (300) taken at random. We
notice that the NoisyIR setting performs only slightly worse than
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Table 6: Results for the query type IN. Once again, we ob-
serve a gap in performance for the finetuned models. In
particular, the finetuned version produces answers that are
much more robust to noise. Moreover, while results are gen-
erally satisfactory, we observe an increase in error for the
Full Pipeline. We attribute this to damaging documents that
trick the reasoner into mispredicting the presence of an ob-
ject, as evidenced by the high loss for the DamagingIR set-
ting.

Stock Model Total Error ↓ Accuracy ↑
Perfect IR 0.131 ± 0.014 0.869 ± 0.014
Noisy IR 0.404 ± 0.176 0.906 ± 0.007
Damaging IR 0.829 ± 0.357 0.811 ± 0.013
Full 0.793 ± 0.150 0.672 ± 0.018

FTmodel

Perfect IR 0.060 ± 0.007 0.940 ± 0.007
Noisy IR 0.085 ± 0.007 0.946 ± 0.004
Damaging IR 0.436 ± 0.054 0.838 ± 0.008
Full 0.330 ± 0.015 0.877 ± 0.007

the PerfectIR setting, showing that our model is actually robust to
noise.

Following this experiment, we devised a new setting, identical
to NoisyIR, but in which the negative documents are not taken at
random anymore. In fact, we take the non-relevant document whose
CLIP embedding with the query is the highest. We call this setting
DamagingIR. Results clearly show that these documents are able to
"trick" the reasoner into generating wrong intermediate answers,
causing a large FP error and ultimately a more significant total
error resulting in a performance difference between the PerfectIR
version and the Full Pipeline one.

DamagingIR has already been observed by [26] and, to the best
of the authors’ knowledge, has not been yet fully addressed. At the
end of this Section, we provide a more complete commentary on
this issue.

In Table 6, we show results for the IN query type. This query
answers questions of the type “In how many pictures there are
{object}?". We consider two metrics in this scenario that mirror the
ones defined for the COUNT setting. First, we consider accuracy,
that is, the percentage of time the intermediate results 𝐴𝑝𝑖 are
exactly equal to their respective ground truths. The total error
indicates the absolute deviation of the total number of documents
found satisfying the condition from its ground truth, later averaged
over all queries and normalized by cardinality. We can immediately
notice that the finetuned version of the reasoner generally performs
better with respect to its stock counterpart. We also notice the
positive results obtained by the Full Pipeline, even though they
are lower than the near-perfect PerfectIR. Once again, even more
clearly than before, we can attribute this reduction in performance
to DamagingIR, that is, to false positive documents that manage to
“trick" the model into thinking that there is an object in the image

when there is really not, as evidence by the drop in performance
observed under this regime.

Finally, we report results for the MAX query type, which return
the document with the max instances of a particular object in the
collection. We test on the same 4 scenarios and report on three
metrics. Δ and total error are specular to previous settings, while
total accuracy is the percentage of queries in which the correct doc-
ument is found. This is the scenario that shows the most significant
difference between the stock reasoner and its finetuned version.
We attribute this gap to an issue cited earlier, in which for pictures
with high instances of a particular object, the model would pro-
duce indecisive answers like “many", a problem that the finetuned
model does not feature. Furthermore, we notice that the difference
between the PerfectIR and the Full Pipeline version is rather small.
This stems from the fact that, unlike in the two other scenarios,
false positives documents are unlikely to be appetible candidates
for the MAX type of query, failing to impact the final outcome. We
also register that, even when the model is not able to retrieve the
correct max document, the picture found has a comparable number
of instances, as indicated by the total error.

Overall, the results are very promising and fully show the po-
tential for Multimodal Neural Databases. We managed to build an
effective and efficient retrieval system with a high recall. The rea-
soner module, and the pipeline as a whole, show good performance
and resistance to noise, with low error and high accuracy, coupled
with a resistance to noise. However, like other systems in IR, it is
weak to DamagingIR, as shown by the increased caused false posi-
tives. We argue that by tackling this issue we can further increase
the performance of MMNDB and bring it close to the optimum.

5 FUTURE RESEARCH DIRECTIONS
The introduction of Multimodal Neural Databases paves the way
toward new and exciting research directions; in this section, we
proceed to discuss some of the more interesting ones.

In this paper, we have shown the feasibility of the proposed task
but have yet to explore many open problems.

First and foremost, a key feature in any database system is the
ability to update its information. In a typical database system, one
would expect to be able to remove, add, or modify the information as
he wishes. This is not straightforward under our current paradigm
and needs more research efforts.

On this line, it would be crucial to account for the importance of
time in databases. I could ask the database question like "What is
the place I visited the most between 1 pm and 3 pm this year?"

Furthermore, we have restricted ourselves to only twomodalities,
and in particular, a database made of strictly images. Expanding
available modalities is a clear path with obvious benefits. Addition-
ally, we could consider not only documents but documents and their
meta-data. To provide an example, whenever we take a picture with
our smartphone, we collect a variety of information, such as the
location and time, which would definitely be helpful for a database
of this kind.

To remain in the field of smartphones, recently, video-clip shar-
ing has become very popular among social network users. Asking
database-like queries on videos is an open problem that presents
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many challenges. Among all, it is crucial to be able to identify en-
tities along frames to be able to answer queries effectively. While
recognizing an entity (like a person) is generally feasible for text,
it is much more complex when considering different modalities.
Solving this will be critical for the development of MMNDBs.

In our presentation, we stressed the fact that the proposed archi-
tecture is not the only possible way of solving this problem. In fact,
recently, we have witnessed the power of large foundational models
to solve a wide array of tasks, with chatGPT and GPT-x models, in
general, leading the way [23]. We believe that these large founda-
tional models could bring an advance to this field as well. However,
this is not straightforward, and some issues should be addressed.
These models require a large amount of data to be pre-trained;
this begs the question of how one could encapsulate the mem-
ory used during training from the actual Multimodal Database to
avoid knowledge contamination. By knowledge contamination, we
mean the known phenomenon for which data used during pretrain-
ing is spilled when generating answers in a completely unrelated
context. Knowledge contamination proved troublesome in many
applications, with some systems allegedly revealing private keys or
even personal phone numbers. Furthermore, true multimodality in
these large models remains an open research direction and a major
roadblock toward conversational multimodal systems.

Finally, we have taken Multimodal Neural Database in its most
general setting. However, one might be interested in specific scenar-
ios with more precise guidelines and goals. For instance, there may
be cases in which one has a precise idea of which kind of queries are
to be expected. In that case, strategies could be crafted to optimize
the system. In traditional database systems, for example, index-
ing or creating views for common queries is a prevalent practice.
Creating equivalent procedures for MMNDB is still unexplored.

6 RELATEDWORK
Multimedia Information Retrieval (MMIR) Bridging the gap
between multimodal unstructured data and structured database
systems has always been a central key endeavor in Information
Retrieval [11]. The former is vastly highly available on the web but
challenging to digest and query compared to the latter. Particular
focus has been posed on content-based image retrieval [15, 25, 27]
and recently on cross-modal retrieval [13, 31], which have been
made possible with the recent advancements in deep learning [14].
Specifically, there has been an explosion of such approaches for
Image-text retrieval [9, 21, 24, 35–37]. However, these systems are
primarily concerned with retrieving relevant documents (e.g., im-
ages) based on a given query (e.g., text). In contrast, MMNDBs focus
on answering database-like queries on large data collections, which
current cross-modal retrieval methods cannot achieve.
Multimodal Neural Models There has been a recent surge in the
development of multimodal neural models that can handle data in
different forms, primarily images, and text, for various applications.
Usually, this is performed via a single neural multimodal encoder
[3, 8, 17, 32, 33] or via different encoders for each modality that
is jointly aligned via a shared space [22, 34]. In MMNDBs, we
take advantage of this characteristic by using a separate encoder
system as a Retriever to precompute and index visual tokens, thus
reducing computation and time at runtime by only using the text

encoder to compute the textual embedding of the query. However,
directly applying these neural models to the MMNDB task would
not be scalable due to the high computational cost. We use them
as components in our architecture, building on their successes in
other vision-language tasks.
Visual Question Answering (VQA) Most of these multimodal
vision-text models are evaluated on the task of visual question
answering [10], where the goal is to generate an accurate and se-
mantically coherent response based on a question about an image.
Usually, these involve using reasoning and other capacities that
are non-trivial, even for current neural architectures. Compared to
the task of MMNDBs, VQA is defined on a single image-question
pair and requires reasoning over the image to answer the ques-
tion. Closer to the task of MMNDBs, is Open-domain Question
Answering (OpenQA) [39] and the multimodal variant WebQA
[7] which aim to answer natural language questions over large-
scale unstructured textual documents. Compared to the task of
MMNDBs, their scope is different and involves multimodal, open-
domain question-answering, while we want to focus on efficiently
answering database-like queries over a collection of documents in
different formats (e.g., images).
Answering Database Queries There has been substantial effort
put into converting queries expressed in natural language into
SQL queries for databases with known structure [1, 16, 38], and
there have also been advancements in adapting this approach for
semi-structured data and knowledge bases [4, 20].

Recently, Thorne et al. [28, 29] proposed NeuralDB as a way to
perform database queries over a collection of textual documents
without the need to translate data or queries into a predefined data-
base schema but using parallel neural techniques instead. Their
approach is very effective but it: (i) requires preprocessing and anal-
ysis for the aggregation operator; (ii) is limited to simple queries
and (iii) is capable of handling data just in textual format. In this
paper, we stem from this research approach and tackle the third lim-
itation extending the original architecture proposed to multimodal
document processing.
Retrieval-augmented models Recently there has been a surge
of interest in the line of research concerning retrieval-augmented
neural models [6]. Most of the current models focus on augmenting
current language models’ capabilities with an external memory or
retrieval mechanism that retrieves relevant documents given an
input query, reducing the number of parameters and non-factual
errors [19].

7 CONCLUSION
In this paper, we have proposed to expand the field of Multimedia
Information retrieval through the introduction of Multimodal Neu-
ral Databases. MMNDBs promise to answer complex database-like
queries that involve reasoning over multiple modalities at scale. We
have demonstrated the feasibility and potential of this system by
proposing a first principled approach to solve this problem with an
architecture composed of three modules - retriever, reasoner, and
aggregator - and performing a rich set of experiments. We have
discussed potential future research directions that could stem from
the system introduced in this paper. MMNDBs set a new research
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agenda that strives to simultaneously act as a bridge between infor-
mation retrieval and database systems and reduce the gap between
the two. We believe MMNDBs have the potential to substantially
advance not only the field of MMIR but the general field of Infor-
mation Retrieval in its entirety.
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